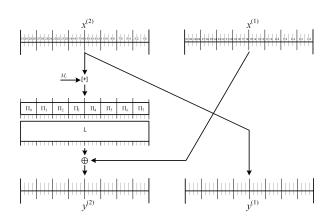
Обзор последних публикаций по криптографическим исследованиям алгоритма шифрования ГОСТ 28147-89


В.И. Рудской rudskoy_vladimir@mail.ru

ФСБ России

XIV международная конференция «РусКрипто'2012»

- Основные результаты
 - O. Kara «Reflection Attacks on Product Ciphers» (INDOCRYPT 2008)
 - T. Isobe «A Single-Key Attack on the Full GOST Block Cipher» (FSE 2011, JoC)
 - I. Dinur, O. Dunkelman, A. Shamir «Improved Attacks on Full GOST» (ePrint, FSE 2012)
 - Bo Zhu, Guang Gong «Multidimensional Meet-in-the-Middle Attack and Its Applications to GOST, KTANTAN and Hummingbird-2»
- 2 Другие «результаты»
 - N. Courtois «Algebraic Complexity Reduction and Cryptanalysis of GOST», и еще не менее 3 работ
 - N. Courtois, M. Misztal «Differential Cryptanalysis of GOST», и еще не менее 2 работ

Описание алгоритма ГОСТ 28147-89

Ключевая развертка:

$$[K_1, K_2, ..., K_8], [K_1, ..., K_8], [K_1, ..., K_8], [K_8, ..., K_1]$$

- 1 Основные результаты
 - \bullet O. Kara «Reflection Attacks on Product Ciphers» (INDOCRYPT 2008)
 - T. Isobe «A Single-Key Attack on the Full GOST Block Cipher» (FSE 2011, JoC)
 - I. Dinur, O. Dunkelman, A. Shamir «Improved Attacks on Full GOST» (ePrint, FSE 2012)
 - Bo Zhu, Guang Gong «Multidimensional Meet-in-the-Middle Attack and Its Applications to GOST, KTANTAN and Hummingbird-2»
- Другие «результаты»
 - N. Courtois «Algebraic Complexity Reduction and Cryptanalysis of GOST», и еще не менее 3 работ
 - N. Courtois, M. Misztal «Differential Cryptanalysis of GOST», и еще не менее 2 работ

Reflection property

- $H = F \circ G \circ F^{-1}$
- G(x) = x
- $y = F^{-1}(x)$
- $\bullet \ H(y) = y$

Применение к ГОСТ 28147-89

- $E_K = F_K \circ F_K \circ F_K \circ S \circ F_K^{-1}$
- $E_K(x) = y \Rightarrow F_K^2(x) = y$

Reflection property

- $H = F \circ G \circ F^{-1}$
- G(x) = x
- $y = F^{-1}(x)$
- \bullet H(y) = y

Применение к ГОСТ 28147-89

- $E_K = F_K \circ F_K \circ F_K \circ S \circ F_K^{-1}$
- ullet S имеет 2^{32} неподвижных точек
- $E_K(x) = y \Rightarrow F_K^2(x) = y$

Слабые ключи

- $F_K(x) = x$ и S(x) = x
- $E_K(x) = x$
- Решение $F_K(x) = x$: перебор $k_1, ..., k_6$, вычисление k_7, k_8
- Трудоемкость 2192
- Материал 2³² подобранных открытых текстов
- Доля ключей 2⁻³²

Усечение до 30 итераций (без первых двух)

- $F_K[3,8] \circ F_K[1,8](x) = y$
- \bullet Перебор $k_3,...,k_8$ вычисление k_1,k_2
- Материал 2³² известных открытых текстов
- Трудоемкость $2^{192} \cdot 2^{32} = 2^{224}$

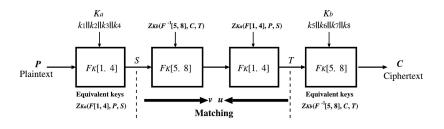
Слабые ключи

- $F_K(x) = x$ и S(x) = x
- $E_K(x) = x$
- Решение $F_K(x) = x$: перебор $k_1, ..., k_6$, вычисление k_7, k_8
- Трудоемкость 2192
- Материал 2³² подобранных открытых текстов
- Доля ключей 2⁻³²

Усечение до 30 итераций (без первых двух)

- $F_K[3,8] \circ F_K[1,8](x) = y$
- Перебор $k_3, ..., k_8$ вычисление k_1, k_2
- Материал 2³² известных открытых текстов
- Трудоемкость $2^{192} \cdot 2^{32} = 2^{224}$

Основные результаты


- O. Kara «Reflection Attacks on Product Ciphers» (INDOCRYPT 2008)
- T. Isobe «A Single-Key Attack on the Full GOST Block Cipher» (FSE 2011, JoC)
- I. Dinur, O. Dunkelman, A. Shamir «Improved Attacks on Full GOST» (ePrint, FSE 2012)
- Bo Zhu, Guang Gong «Multidimensional Meet-in-the-Middle Attack and Its Applications to GOST, KTANTAN and Hummingbird-2»

Другие «результаты»

- N. Courtois «Algebraic Complexity Reduction and Cryptanalysis of GOST», и еще не менее 3 работ
- N. Courtois, M. Misztal «Differential Cryptanalysis of GOST», и еще не менее 2 работ

«A Single-Key Attack on the Full GOST Block Cipher»

- Использование «Reflection property»
- Aтака Meet-in-the-Middle на 16 раундов по одной паре вход-выход
- Построение множеств эквивалентных ключей для 4 раундов
- ullet При биективных S-боксах по (P,S,k_1,k_2) вычисляются (k_3,k_4)

• Трудоемкость $(2^{128}(2^{64}+2^{64})+(2^{128}\cdot 2^{64}+2^{128}\cdot 2^{64}\cdot 2^{-64}+\ldots))\times 2^{32}=2^{225}$

• Утверждается, что для произвольных S-боксов результат тот же (?!)

Основные результаты

- O. Kara «Reflection Attacks on Product Ciphers» (INDOCRYPT 2008)
- T. Isobe «A Single-Key Attack on the Full GOST Block Cipher» (FSE 2011, JoC)
- I. Dinur, O. Dunkelman, A. Shamir «Improved Attacks on Full GOST» (ePrint, FSE 2012)
- Bo Zhu, Guang Gong «Multidimensional Meet-in-the-Middle Attack and Its Applications to GOST, KTANTAN and Hummingbird-2»

Другие «результаты»

- N. Courtois «Algebraic Complexity Reduction and Cryptanalysis of GOST», и еще не менее 3 работ
- N. Courtois, M. Misztal «Differential Cryptanalysis of GOST», и еще не менее 2 работ

- Атака на 8 раундов по двум парам вход-выход
- ullet Уменьшается количество ключей прошедших фильтрацию $2^{192} o 2^{128}$
- Пары вход-выход вычисляются с использованием «Reflection property» и с использованием неподвижных точек 8 раундов зашифрования
- В случае существования неподвижной точки 8 раундов зашифрования общая трудоемкость атаки снижается по сравнению с предыдущими работами
- Предложен алгоритм фильтрации с малыми требованиями к памяти (за счет увеличения общей трудоемкости)
- Используется слабое «рассеивание» алгоритма ГОСТ

Использование неподвижной точки

- ullet Предполагается существование неподвижной точки $F_{\mathcal{K}}(P)=P$
- Неподвижная точка не обязательно существует
- Необходимый исходный материал 2⁶⁴
- $E_K(P) = C$
- $F_K(P) = P$ и $F_K(C) = \overline{P}$
- ullet Трудоемкость атаки $2^{64} \cdot max(2^{128}, \mathcal{T}_8) \geq 2^{192}$

$$P \xrightarrow{K_1, K_2, \dots, K_8} P \xrightarrow{K_1, K_2, \dots, K_1} P \xrightarrow{Rounds 1-8} P \xrightarrow{Rounds 9-16} P \xrightarrow{Rounds 17-24} P \xrightarrow{Rounds 25-32} C$$

 ${\it «Reflection property»}$

- Перебор всех X дополнительный множитель 2^{64} в трудоемкость
- ullet Неподвижные точки для $F_K \circ S \circ F_K^{-1}$ существуют
- Исходный материал 2³²
- Пары (P, X) и (X, C)
- ullet Трудоемкость атаки $2^{32} \cdot 2^{64} \cdot max(2^{128}, \mathcal{T}_8) \geq 2^{224}$

Атака на 8 раундов по 2 парам вход-выход

$$(I, O)$$
 и (I^*, O^*)

Простейшая атака MitM

- Перебор $K_1 K_4$ и вычисление Y, Y^* по I, I^*
- Перебор $K_5 K_8$ и вычисление $\widehat{Y}, \widehat{Y^*}$ по O, O^*
- ullet Согласование $Y=\widehat{Y}$ и $Y^*=\widehat{Y^*}$
- Трудоемкость 2¹²⁸, Память 2¹²⁸

MitM-атака с использованием эквивалентных ключей

- Перебор Ү
- ullet Построение множества эквивалентных ключей $F_K[1,4](I)=Y$
- Вычисление для каждого ключа У*
- ullet Аналогично $F_K[5,8](Y)=O$, вычисление \widehat{Y}^*
- \bullet согласование $Y^* = \widehat{Y^*}$
- Трудоемкость 2¹²⁸, Память 2⁶⁴

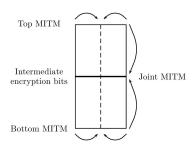
Атака на 8 раундов по 2 парам вход-выход

$$(I, O)$$
 и (I^*, O^*)

Простейшая атака MitM

- Перебор $K_1 K_4$ и вычисление Y, Y^* по I, I^*
- Перебор K_5-K_8 и вычисление $\widehat{Y},\,\widehat{Y^*}$ по $O,\,O^*$
- ullet Согласование $Y=\widehat{Y}$ и $Y^*=\widehat{Y^*}$
- Трудоемкость 2¹²⁸, Память 2¹²⁸

MitM-атака с использованием эквивалентных ключей

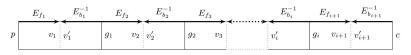

- Перебор Ү
- ullet Построение множества эквивалентных ключей $F_{\mathcal{K}}[1,4](I)=Y$
- Вычисление для каждого ключа Y*
- Аналогично $F_K[5,8](Y) = O$, вычисление $\widehat{Y^*}$
- ullet согласование $Y^* = \widehat{Y^*}$
- Трудоемкость 2¹²⁸, Память 2⁶⁴

Использование слабого рассеивания - базовая атака

- Перебор ключей $K_5 K_8$ и частичное расшифрование Y, Y^*
- Использование уравнений, связывающих вход, выход, ключ и промежуточные состояния как в работе Isobe
- Перебор/определение части бит ключа и промежуточных состояний
- Наличие двух пар вход-выход позволяет исключить неизвестные ключи: $Z \boxplus K = Q$ и $Z^* \boxplus K = Q^* \Rightarrow Z \boxminus Z^* = Q \boxminus Q^*$
- Построение дерева перебора. Обход дерева в глубину с проверкой непротиворечивости на каждом шаге
- Вычисление K_1 , K_4 и промежуточных состояний с последующим вычислением K_2 , K_3
- Трудоемкость 2¹⁴⁰, память 2¹⁹

Использование слабого рассеивания - 2 Dimentional MitM

- \bullet Перебор части бит Y, Y^*
- Применение предыдущей атаки к первым 4 итерациям и к последним 4 итерациям
- Согласование и получение возможных ключей
- Трудоемкость 2¹²⁸, память 2³⁶



Основные результаты

- O. Kara «Reflection Attacks on Product Ciphers» (INDOCRYPT 2008)
- T. Isobe «A Single-Key Attack on the Full GOST Block Cipher» (FSE 2011, JoC)
- I. Dinur, O. Dunkelman, A. Shamir «Improved Attacks on Full GOST» (ePrint, FSE 2012)
- Bo Zhu, Guang Gong «Multidimensional Meet-in-the-Middle Attack and Its Applications to GOST, KTANTAN and Hummingbird-2»
- 2 Другие «результаты»
 - N. Courtois «Algebraic Complexity Reduction and Cryptanalysis of GOST», и еще не менее 3 работ
 - N. Courtois, M. Misztal «Differential Cryptanalysis of GOST», и еще не менее 2 работ

«Multidimensional Meet-in-the-Middle Attack and Its Applications to GOST, KTANTAN and Hummingbird-2»

- Разбиение на 4 интервала:
 - \bullet [1 8] с согласованием после 5 раунда
 - [9 16] с согласованием после 11 раунда
 - [17 24] с согласованием после 20 раунда
 - [25 32]
- Используется «Reflection property»:
 - Значение после 16 раундов известно и совпадет с шифртекстом
 - 4-ый интервал совпадает с 3-им
 - Значение после 24 итераций симметрично \Rightarrow перебор 2^{32}
 - Значение после 8 итераций перебор 2⁶⁴
- Материал 2³²
- Трудоемкость 2¹⁹⁵, память 2¹⁹²

Другие «результаты»

Серия работ:

- Алгебраический метод:
 - N. Courtois «Security Evaluation of GOST 28147-89 In View Of International Standardisation»

 - N. Courtois «Algebraic Complexity Reduction and Weak Keys in GOST»
 ...
- Разностный метод:
 - N. Courtois, M. Misztal «First Differential Attack On Full 32-Round GOST»
 - N. Courtois, M. Misztal «Differential Cryptanalysis of GOST»
 - N. Courtois, M. Misztal «An Improved Differential Attack on Full GOST»

Другие «результаты»

BEWARE I'm going to cheat you and totally ignore the large data complexity of many attacks... ⇒ just compare the running time 5 Courtois FSE 2012

- Основные результаты
 - O. Kara «Reflection Attacks on Product Ciphers» (INDOCRYPT 2008)
 - T. Isobe «A Single-Key Attack on the Full GOST Block Cipher» (FSE 2011, JoC)
 - I. Dinur, O. Dunkelman, A. Shamir «Improved Attacks on Full GOST» (ePrint, FSE 2012)
 - Bo Zhu, Guang Gong «Multidimensional Meet-in-the-Middle Attack and Its Applications to GOST, KTANTAN and Hummingbird-2»
- 2 Другие «результаты»
 - N. Courtois «Algebraic Complexity Reduction and Cryptanalysis of GOST», и еще не менее 3 работ
 - N. Courtois, M. Misztal «Differential Cryptanalysis of GOST», и еще не менее 2 работ

«Algebraic Complexity Reduction and Cryptanalysis of GOST»

Основная идея

- Использование структуры алгоритма шифрования
- Сведение задачи анализа E_K с большим количеством пар вход-выход к задаче анализа F_K с малым количеством пар вход-выход
- ullet Представление F_K в виде системы нелинейных уравнений
- Решение полученной системы (XSL метод)

Реазультаты

- Снижение сложности алгебраического представления:
 - ullet Предположения о специфических свойствах $F_{\mathcal{K}}$
 - Перебор промежуточных значений
 - Получение пар вход-выход для F_K
 - порядка 20 различных подходов
- Получение и решение системы уравнений:
 - ??????

«Algebraic Complexity Reduction and Cryptanalysis of GOST»

Снижение сложности алгебраического представления

- ullet Предположение: A : $C=F_K^2(A)$ и $D=F_K^3(A)$ симметричны
- \bullet $E_K(A) = C$
- Из 2^{64} материала перебираются симметричные шифртексты (2^{32})
- Перебирается значение $B = F_K(A)$ (2⁶⁴)
- $Z = E_K^{-1}(B)$
- 3 пары вход-выход для F_K : $A = F_K(Z), B = F_K(A), C = F_K(B),$

rounds	value	es	key	size
		Z		
8	$\mathcal E$	1	256	
	A	\overline{A}		
8	\downarrow \mathcal{E}		256	
	B	B		
8	$\bigcup \mathcal{E}$		256	
	C	$C \bowtie C$		
8	$\bigcup \mathcal{E}$	\mathcal{D} \uparrow	256	
D \triangleright	$\triangleleft D$	B	J	
8 ↑	\mathcal{D}		256	
C	J			
bits 64	-	64	-	
DITS 64		64		

«Algebraic Complexity Reduction and Cryptanalysis of GOST»

Получение и решение системы уравнений

Fact 3 (Key Recovery for 4 Rounds and 2 KP)

Given 2 P/C pairs for 4 rounds of GOST the 128-bit key can be recovered in time equivalent to 2^{24} GOST encryptions on the same software platform (it takes a few seconds). The memory requirements are very small. The attack works with a similar complexity for any choice of GOST S-boxes.

Fact 5 (Key Recovery for 8 Rounds and 3 KP)

Given 3 P/C pairs for 8 rounds of GOST we can produce 2^{64} candidates for the 256-bit key in time equivalent to 2^{120} GOST encryptions. The storage requirements are negligible and all the 2^{64} candidates can be produced in an uniform way, each of them is produced in time of 2^{56} GOST encryptions on average.

Remark: this result is particularly significant because it is close to 2^{128} which one could obtain in a Meet-In-the-Middle (MIM) attack and requires negligible storage

- Основные результаты
 - O. Kara «Reflection Attacks on Product Ciphers» (INDOCRYPT 2008)
 - T. Isobe «A Single-Key Attack on the Full GOST Block Cipher» (FSE 2011, JoC)
 - I. Dinur, O. Dunkelman, A. Shamir «Improved Attacks on Full GOST» (ePrint, FSE 2012)
 - Bo Zhu, Guang Gong «Multidimensional Meet-in-the-Middle Attack and Its Applications to GOST, KTANTAN and Hummingbird-2»
- 2 Другие «результаты»
 - N. Courtois «Algebraic Complexity Reduction and Cryptanalysis of GOST», и еще не менее 3 работ
 - N. Courtois, M. Misztal «Differential Cryptanalysis of GOST», и еще не менее 2 работ

«Differential Cryptanalysis of GOST»

Основная идея

- Использование «множественных» («aggregated») разностных соотношений: $\alpha \to \beta$, где $\alpha \in A$, $\beta \in B$
- Множественное разностное соотношение $(\Delta, \Delta) \to (\Delta, \Delta)$, где $\Delta = 0$ x80700700
- Разностные характеристики:
 - 4R: $2^{-13.6}$ эксперимент
 - 8R: $2^{-25} > (2^{-13.6})^2$ эксперимент
 - 16R: $2^{-48} = (2^{-25})^2 \cdot 2^{2.2}$ оценка (для случайного отображения 2^{-50})

Различные наборы подстановок

- Рассматривается тестовый набор узлов замены из ГОСТ Р 34.11-94
- We are not certain if it is possible at all to make a cipher such as GOST secure against differential cryptanalysis by changing only the S-boxes, which idea was discussed during the ISO standardization process of GOST
- Набор узлов из 1-го рабочего проекта дополнения к стандарту ISO/IEC 18033-3 «почему-то» не рассматривается

Выводы

Сравнительные характеристики различных атак

атака	модификация	сложность	память	материал
Isobe	reflection	2 ²²⁴	2 ⁶⁴	2 ³²
	fixed point - 2DMitM	2 ¹⁹²	2 ³⁶	2 ⁶⁴
Dinur et al.	fixed point - low-memory	2 ²⁰⁴	2 ¹⁹	2 ⁶⁴
	reflection - 2DMitM	2 ²²⁴	2 ³⁶	2 ³²
	reflection - low-memory	2 ²³⁶	2 ¹⁹	2 ³²
Zhu, Gong	reflection	2 ¹⁹⁵	2 ¹⁹²	2 ³²

Слабости алгоритма ГОСТ 28147-89

- Ключевая развертка
 - ullet Очевидное разложение в композицию двух преобразований (F_{K} и S)
 - Большое количество неподвижных точек у 16 последних раундов (Reflection)
 - ullet Сведение к задаче криптоанализа F_K или F_K^2
 - Зависимость раундовых ключей от малого числа бит основного ключа
 - Возможность применения MitM-атак различного вида.
- Плохие рассеивающие свойства линейного преобразования
 - Возможность частичного вычисления промежуточных значений нескольких итераций – MitM-атака с малой памятью
 - Разностный метод

Выводы

- Результаты Isobe, Dinur et al. и Zhu, Gong показывают, что конструкция алгоритма ГОСТ 28147-89 не идеальна с теоретической точки зрения, однако не влияют на практическую стойкость алгоритма
- «Результаты» N. Courtios либо не обоснованы, либо не применимы при оптимальном выборе узлов замены
- Необходимо дополнение стандарта алгоритмом с длиной блока 128 бит