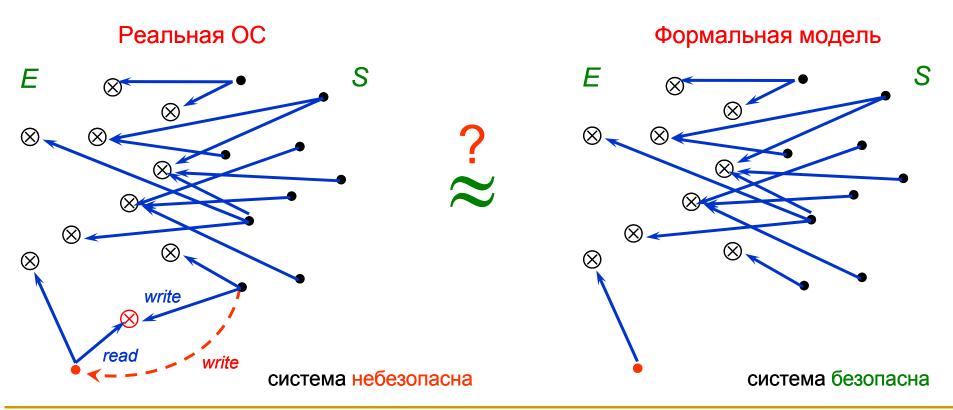
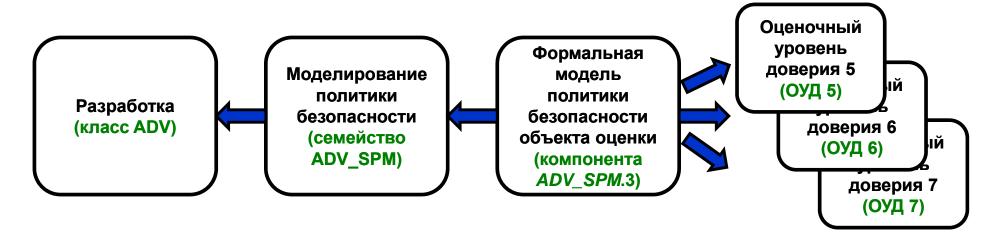
О проблеме обоснования адекватности формальных моделей безопасности логического управления доступом и их реализации в компьютерных системах

д.т.н., доцент Девянин П.Н. УМО ИБ, г. Москва peter_devyanin@hotmail.com


Модели безопасности управления доступом и их применение

- Классическая модель Белла-ЛаПадулы (мандатное управление доступом в ОС) и ее интерпретации, модель мандатной политики целостности информации Биба (механизм MIC в ОС Windows Vista/7/2008), модель систем военных сообщений (ЭПС);
- ▶ Модель Take-Grant и ее основные расширения;
- Модель Харрисона-Руззо-Ульмана и ее развитие модель типизированной матрицы доступов (пакет SELinux);
- Субъектно-ориентированная модель ИПС (ИПС в защищенных ОС);
- Базовая модель ролевого управления доступом *RBAC* (управление доступом в СУБД) и ее расширение для КС с мандатным управлением доступом;
- > Группоцентрические модели управления доступом (*g-SIS*), модели делегирования доверия;
- Модели безопасности логического управления доступом и информационными потоками — ДП-модели (анализ безопасности защищенных ОС).

Постановка проблемы


Применение классических методов теории моделирования (статистических, экспериментальных) для анализа адекватности моделей безопасности логического управления доступом и информационными потоками реальным КС затруднено.

Пример:

Требования критериев оценки защищенности КС

«Критерии оценки безопасности информационных технологий» ГОСТ Р ИСО/МЭК 15408-2002:

«Как минимум, требуется моделировать политики управления доступом и информационными потоками (если они являются частью ПБО), так как в настоящее время это признается возможным».

Поэтапное решение

- 1. В соответствии с заданными для защищенной КС целями безопасности (например, на основе ГОСТ Р ИСО/МЭК 15408-2002) выбор направления формального моделирования безопасности логического управления доступом и информационными потоками (например, мандатное управление доступом).
- 2. Построение формальной модели. В соответствии с целями безопасности формулирование и обоснование условий безопасности КС.
- 3. Получение из формальной модели спецификаций (предусловия и постусловия) функций, реализующих в КС механизм управления доступом. Обоснование корректности реализации функций непосредственно в программном коде. Верификация программного кода устранение «обходных путей» предоставления доступов.

2 этап — построение формальной модели. Пример — РОСЛ ДП-модель

```
E = O \cup C — множество сущностей (О — множество объектов, C — множество контейнеров);
U — множество учетных записей пользователей; ( L_{II} , N_{II} — учетные записи доверенных/недоверенных пользователей);
|u| \subset E \setminus S — множество сущностей, параметрически ассоциированных с u \in U, и UE = \{e \in |u|: u \in U\};
S \subseteq E — субъект-сессии учетных записей пользователей (L_S, N_S — доверенные/недоверенные субъект-сессии);
R, AR — множество ролей/административных ролей (AR \cap R = \emptyset);
]r[ \subset E \setminus S \longrightarrow множество сущностей, параметрически ассоциированных с r \in R \cup AR, и RE = \{e \in [r]: r \in R \cup AR\};
R_r = \{read_r, write_r, execute_r, own_r\} — множество видов прав доступа; R_a = \{read_a, write_a, own_a\} — множество видов доступа;
     R_f = \{write_m, write_t\} — множество видов информационных потоков;
P \subset E \times R_r — множество прав доступа к сущностям; A \subseteq S \times E \times R_a — множество доступов субъект-сессий к сущностям;
F \subseteq E \times E \times R_f— множество информационных потоков;
UA: U \to 2^R, AUA: U \to 2^{AR} — функции авторизованных ролей/административных ролей учетных записей пользователей;
PA: R \to 2^P \setminus \{\emptyset\} — функция прав доступа ролей; user: S \to U — функция принадлежности субъект-сессии учетной
     записи пользователя; roles: S \rightarrow 2^R \cup 2^{AR} — функция текущих ролей субъект-сессий;
can manage rights: AR \rightarrow 2^R — функция администрирования прав доступа ролей;
[s] \subset E \cup U — сущности, функционально ассоциированных с субъект-сессией s, fa: U \times E \to 2^E \cup 2^U — функция,
     задающая множества сущностей, функционально ассоциированных с субъект-сессией при ее создании;
|s| \subset E \setminus S — множество сущностей, параметрически ассоциированных с субъект-сессией, fp: U \times E \to 2^E — функция,
     задающая множества сущностей, параметрически ассоциированных с субъект-сессией при ее создании;
```

 $H_R: R \to 2^R$ — функция иерархии ролей; $H_{AR}: AR \to 2^{AR}$ — функция иерархии административных ролей.

Иерархия сущностей

- H_E : $E \to 2^E$ функцию иерархии сущностей (сопоставляющую каждой сущности $e \in E$ множество сущностей $H_E(e) \subset E$, непосредственно в ней содержащихся), удовлетворяющую условиям:
- Условие 1. Если сущность $e \in H_E(c)$, то e < c, при этом, если $e \in C \cup S$, то не существует сущностиконтейнера $d \in C$ такой, что e < d, d < c.
- Условие 2. Для любых сущностей e_1 , $e_2 ∈ E$, $e_1 ≠ e_2$, по определению выполняются равенство $H_E(e_1) \cap H_E(e_2) \cap (C \cup S) = \emptyset$ и условия:
- \triangleright если o ∈ O, то справедливо равенство $H_E(o) = \emptyset$;
- \triangleright если $e_1 < e_2$, то или $e_1, e_2 \in E \setminus S$, или $e_1, e_2 \in S$;
- \triangleright если $e \in E \setminus S$, то $H_F(e) \subset E \setminus S$;
- \triangleright если s ∈ S, то $H_E(s) \subset S$.
- ехесиte_container: $S \times E \to \{true, false\}$ функция доступа субъект-сессии к контейнеру такая, что по определению для субъект-сессии $s \in S$ и сущности $e \in E$ справедливо равенство execute_container(s, e) = true тогда и только тогда, когда либо $e \in S$, либо $e \in E \setminus S$ и существует последовательность сущностей e_1 , ..., e_n , где $n \ge 1$, $e = e_n$, удовлетворяющих следующим условиям:
- \blacktriangleright не существует сущности-контейнера $e_0 \in E \setminus S$ такой, что $e_1 \in H_E(e_0)$;
- \triangleright $e_i \in H_F(e_{i-1})$, где $1 < i \le n$;
- \triangleright (e_i, execute_r) \in PA(roles(s)), где $1 \le i < n$.
- shared_container: $C \to \{true, false\}$ функцию разделяемых контейнеров такую, что сущность-контейнер $c \in C \setminus S$ является разделяемой, когда $shared_container(c) = true$, в противном случае $shared_container(c) = false$.

Мандатный контроль целостности

```
(LI, \leq) — линейная шкала двух уровней целостности данных, где LI = \{i\_low, i\_high\}, i\_low < i\_high; (i_u, i_e, i_r, i_s) \in I — четверка функций уровней целостности, при этом: i_u: U \to LI — функция уровней целостности субъект-сессий; i_e: E \setminus S \to LI — функция уровней целостности сущностей; i_r: R \cup AR \to LI — функция уровней целостности ролей; i_s: S \to LI — функция текущих уровней целостности субъект-сессий; I — множества всех четверок функций заданного вида; Предположение.
```

- ightharpooneй $r, r' \in R \cup AR$, если $r \leq r'$, то $i_r(r) \leq i_r(r')$;
- > для сущностей $e, e' \in E \setminus S$, если $e \le e'$, то $i_e(e) \le i_e(e')$;
- \blacktriangleright для субъект-сессий $s, s' \in S$, если $s \le s'$, то $i_s(s) \le i_s(s')$;
- \triangleright для каждой сущности $e \in u$, где $u \in U$, справедливо равенство $i_e(e) = i_u(u)$;
- \triangleright для субъект-сессии $s \in S$ верно неравенство $i_s(s) \le i_u(user(s))$;
- > для учетной записи пользователя $u \in U$ и роли $r \in R$, если $r \in UA(u)$, то $i_r(r) \le i_u(u)$;
- \triangleright для субъект-сессии $s \in S$ и роли $r \in R$, если $r \in roles(s)$, то $i_r(r) \le i_s(s)$;
- ho для права доступа к сущности $(e, \alpha) \in P$, где $\alpha \in \{own_r, write_r\}$, и роли $r \in R$, если $(e, \alpha) \in PA(r)$, то $i_e(e) \leq i_r(r)$;
- \triangleright для учетной записи доверенного пользователя $u \in L_U$ справедливо равенство $i_u(u) = i_high$;
- \triangleright для учетной записи недоверенного пользователя $u \in N_U$ справедливо равенство $i_u(u) = i_low$;
- \triangleright верно равенство $i_e(i_entity) = i_high$.

Фактическое владение. Фактические роли, права доступа, доступы

de_facto_own: $S \to S$ — функция фактического владения субъект-сессий субъект-сессиями такая, что для $s, s' \in S$.

Предположение. Если субъект-сессия s имеет доступ владения own_a к субъект-сессии s, то субъект-сессия s получает возможности:

- использовать роли из множества текущих ролей субъект-сессии s';
- изменять множество текущих ролей субъект-сессии s';
- ▶ использовать текущий уровень целостности субъект-сессии s';
- ▶ использовать доступы субъект-сессии s' или удалить субъект-сессию s';
- фактически владеть субъект-сессиями, которыми фактически владеет субъект-сессия s';
- ▶ использовать административные роли субъект-сессии s';
- использовать информационные потоки, которые реализует субъект-сессия s'.

Используем обозначения:

- ightharpoonup de_facto_roles: $S o 2^{R \cup AR}$ фактические текущие роли субъект-сессий;
- ightharpoonup de_facto_rights: $S o 2^p$ фактические текущие права доступа субъект-сессий;
- ightharpoonup de_facto_accesses: $S o 2^A$ фактические доступы субъект-сессий.


Примеры де-юре правил без информационных потоков по времени

$take_roles(x, x', \{r_j: 1 \le$	$x, x' \in S, r_j \in UA(user(x)) \cup AUA(user(x)), \{(e, x, x') \in S, r_j \in UA(user(x)), x' \in S, x' $	S' = S, $E' = E$, $PA' = PA$, $user' = user$,
<i>j</i> ≤ <i>k</i> })	$read_a$): $e \in]r_j[$, где $1 \leq j \leq k$ } $\subset A$, $i_r(r_j) \leq i_s(x)$,	$A' = A, F' = F, H_{E'} = H_{E},$
	Constraint _s (roles') = true, [если $i_r(r_i) = i_high$, то (x',	$roles'(x) = roles(x) \cup \{r_j: 1 \le j \le k\}$ и для $s \in S \setminus \{x\}$ выполняется
	i_entity , $write_a$) ∈ A , где 1 ≤ j ≤ k]	равенство roles'(s) = roles(s), F' = F
grant_rights(x, x', r,	$x, x' \in S, y_j \in E, r \in can_manage_rights(roles(x) \cap$	S' = S, E' = E, user' = user, roles' = roles,
$\{(y_j, \alpha_{rj}): 1 \leq j \leq k\}\}$	AR), $(x, y_j, own_a) \in A$, $i_r(r) \le i_s(x)$, [если $y_j \in S$, то $\alpha_{rj} = S$	$A' = A, H_{E'} = H_{E}, PA'(r) = PA(r) \cup \{(y_j, \alpha_{rj}): 1 \le j \le k\}, \mu$
	own_r и $i_s(y_j) \le i_r(r)$], [если $y_j \in E \setminus S$ и $\alpha_{rj} \in \{own_r,$	для $r' \in R \setminus \{r\}$ выполняется равенство $PA'(r') = PA(r'), \ F' = F$
	$write_r$ }, то $i_e(y_j) \le i_r(r)$], [Constraint _P (PA') = $true$], [если	
	$i_e(y_j) = i_high$, то $(x', i_entity, write_a) \in A$, где $1 \le j \le k$]	
create_hard_link(x, x',	$x, x' \in S, y \in O \setminus S, z \in C \setminus S, y \notin UE \cup RE, (x, z, z)$	S' = S, E' = E, PA' = PA, user' = user, roles' = roles, A' = A,
y, z)	$write_a$) $\in A$, $i_e(y) \le i_r(r) \le i_s(x)$, $i_e(y) \le i_e(z) \le i_s(x)$, [если	$H_{E}'(z) = H_{E}(z) \cup \{y\},$
	$i_e(z) = i_high$, $to(x', i_entity, write_a) \in A$	для $e \in E \setminus \{z\}$ выполняется равенство $H_E'(e) = H_E(e), F' = F$
create_first_session(x,	$x, x' \in S, u \in U, y \in E, z \notin E,$	$S' = S \cup \{z\}, E' = E \cup \{z\}, A' = A \cup \{(x, z, own_a)\}, i_s'(z) = zi, user'(z) = xi$
x', u, r, y, z, zi)	$(y, execute_r) \in PA(roles(x)), execute_container(x, y)$	u, для s ∈ S выполняется равенство user'(s) = user(s),
	= true, $r \in can_manage_rights(roles(x) \cap AR)$, $zi \le$	roles'(z) = ∅, для s ∈ S выполняется равенство roles'(s) =
	$ i_{u}(u), zi \leq i_{v}(r), \{(e, x, read_{a}): e \in]u[\} \subset A,$	$roles(s), [z] = fa(u, y),]z[= fp(u, y), PA'(r) = PA(r) \cup \{(z, own_r)\},$ и для
	$Constraint_{P}(PA') = true, Constraint_{S}(roles') = true,$	$r' \in R \setminus \{r\}$ выполняется равенство $PA'(r') = PA(r')$,
	[если $zi = i_high$, то $(x^i, i_entity, write_a) \in A$]	$H_E'(z)=\varnothing$, для $e\in E$ выполняется равенство $H_E'(e)=H_E(e)$, $F'=F$
access_write(x, x', y)	$x, x' \in S, y \in E \setminus S, (y, write_r) \in PA(roles(x)),$	S' = S, E' = E, PA' = PA, user' = user, roles'
	execute_container(x, y) = true, $i_e(y) \le i_s(x)$, [если $i_e(y)$	= roles, H_E ' = H_E , A ' = $A \cup \{(x, y, write_a)\}$,
	= i_high , $To(x', i_entity, write_a) \in A$	$F' = F \cup \{(x, y, write_m)\}$

Де-факто правила без информационных потоков по времени

)) условия применения де-юре правила преобразования состояний $op(y, y',)$ соntrol(x, y, z) $x, y \in S, x \neq y, z \in [y]$ и или $x = z$, или $(x, z, write_m) \in S' = S, E' = E, PA' = PA$, $user' = user$, $roles' = roles$, $H_E' = H_E$, $A' \in F$, или $z \in S$ и $z \in de_facto_own(x)$ $F' = F$, $de_facto_own'(x) = de_facto_own(x) \cup \{y\}$ $user' = user$, $user' =$
$control(x, y, z) \qquad x, y \in S, x \neq y, z \in [y] \text{ и или } x = z, \text{ или } (x, z, write_m) \in S' = S, E' = E, PA' = PA, user' = user, roles' = roles, H_E' = H_E, A'$ $F, \text{ или } z \in S \text{ и } z \in de_facto_own(x) \qquad F' = F, de_facto_own'(x) = de_facto_own(x) \cup \{y\}$ $know(x, y) \qquad x, y \in S, x \neq y, \text{ и для каждой } e \in]y[\text{, cywectbyet } (e, S' = S, E' = E, PA' = PA, user' = user, roles' = roles, H_E' = H_E, A'$ $x, write_m) \in F \qquad F' = F, de_facto_own'(x) = de_facto_own(x) \cup \{y\}$ $take_access_own(x, y, x, y, z \in S, y \in de_facto_own(x), z \in de_facto_own(y) \qquad S' = S, E' = E, PA' = PA, user' = user, roles' = roles, H_E' = H_E, A'$
F , или $z \in S$ и $z \in de_facto_own(x)$ $F' = F$, $de_facto_own'(x) = de_facto_own(x) \cup \{y\}$ $x, y \in S, x \neq y$, и для каждой $e \in [y]$, существует (e, $S' = S, E' = E, PA' = PA$, $user' = user$, $roles' = roles$, $H_E' = H_E$, $A' \in S$, W
$know(x, y)$ $x, y \in S, x \neq y,$ и для каждой $e \in]y[$, существует $(e, S' = S, E' = E, PA' = PA, user' = user, roles' = roles, H_E' = H_E, A' x, write_m) \in F F' = F, de_facto_own'(x) = de_facto_own(x) \cup \{y\} take_access_own(x, y, x, y, z \in S, y \in de_facto_own(x), z \in de_facto_own(y) S' = S, E' = E, PA' = PA, user' = user, roles' = roles, H_E' = H_E, A'$
$x, write_m$) $\in F$ $F' = F, de_facto_own'(x) = de_facto_own(x) \cup \{y\}$ $take_access_own(x, y, x, y, z \in S, y \in de_facto_own(x), z \in de_facto_own(y)$ $S' = S, E' = E, PA' = PA, user' = user, roles' = roles, H_E' = H_E, A'$
$take_access_own(x, y, x, y, z \in S, y \in de_facto_own(x), z \in de_facto_own(y)$ $S' = S, E' = E, PA' = PA, user' = user, roles' = roles, H_E' = H_E, A'$
z) $F' = F, de_facto_own'(x) = de_facto_own(x) \cup \{z\}$
flow_memory_access($x \in S, y \in E, (y, \alpha_a) \in de_facto_accesses(x), rde \alpha_a \in S' = S, E' = E, PA' = PA, user' = user, roles' = roles, A' = A, H_E' = R + R + R + R + R + R + R + R + R + R$
x, y, α_a) {read _a , write _a } ecли $\alpha_a = read_a$, то $F' = F \cup \{(y, x, write_m)\}$,
если $\alpha_a = write_a$, то $F' = F \cup \{(x, y, write_m)\}$
$find(x, y, z)$ $x, y \in S, z \in E, x \neq z, (x, y, write_m) \in F, [или (z, write_a)]$ $S' = S, E' = E, PA' = PA, user' = user, roles' = roles, A' = A, H_E' = R$
$\in de_facto_accesses(y)$, или $(y, z, write_m) \in F$] $F' = F \cup \{(x, z, write_m)\}$
$post(x,y,z) \hspace{1cm} x, \hspace{1cm} z \hspace{1cm} \in \hspace{1cm} S, \hspace{1cm} y \hspace{1cm} \in \hspace{1cm} E, \hspace{1cm} x \hspace{1cm} \neq \hspace{1cm} z, \hspace{1cm} (y, \hspace{1cm} read_a) \hspace{1cm} \in \hspace{1cm} S'=S, \hspace{1cm} E'=E, \hspace{1cm} PA, \hspace{1cm} user'=user, \hspace{1cm} roles'=roles, \hspace{1cm} A'=A, \hspace{1cm} H_E'=A, \hspace{1cm} H_E'=A$
$de_facto_accesses(z)$, [или $(y, write_a) \in F' = F \cup \{(x, z, write_m)\}$
$de_facto_accesses(x)$, или $(x, y, write_m) \in F$]
$pass(x, y, z) \qquad \qquad y \in S, x, z \in E, x \neq z, \qquad \qquad S' = S, E' = E, PA' = PA, user' = user, roles' = roles, A' = A, H_E' = R$
$(x, read_a) \in de_facto_accesses(y)$ [или $(z, write_a) \in F' = F \cup \{(x, z, write_m)\}$
de_facto_accesses(y), или (y, z, write _m) ∈ F]
$take_flow(x, y) \hspace{1cm} x, y \in S, x \neq y, y \in de_facto_own(x) \hspace{1cm} S' = S, E' = E, PA' = PA, user' = user, roles' = roles, A' = A, H_{E'} = R + R + R + R + R + R + R + R + R + R$
$F' = F \cup \{(x, e, write_m): (y, e, write_m) \in F, e \in E\}$

Зависимость условий и результатов правил

3 этап — обоснование корректности программной реализации формальной модели

Правила вывода — $V \{S\} P$ (в том числе):

- усиления предусловия и ослабления постусловия;
- оператора присваивания;
- условного оператора if;
- последовательности операторов;
- цикла с условием продолжения;
- подпрограмма или сегмент программы.

```
Если
    V \Rightarrow V1 и \{V1\} OP \{P1\} и
    P1 \Rightarrow P
TO
    {V} OP {P}
      Если
           {V1 and B} OP1 {P} и
           {V2 and not B} OP2 {P}
      TO
           {V1 and V2}
           if B
               then OP1
               else OP2
           endif {P}
```

Спасибо за внимание!