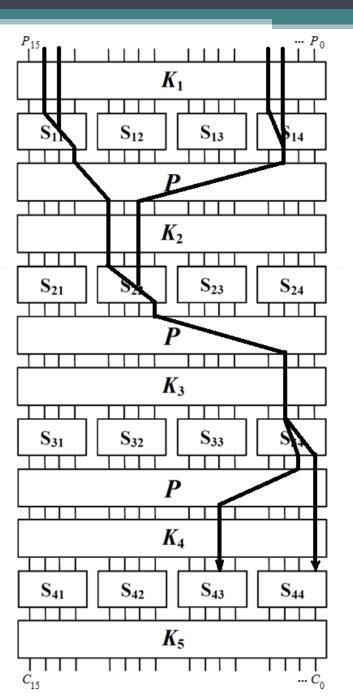
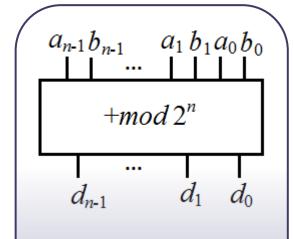

Сложение по модулю 2ⁿ в блочном шифровании

Карондеев А.М. Козлов А.А. Силков А.А.

МГТУ им. Н.Э. Баумана


Known Plaint Text Attack

Известно:


- Алгоритм шифрования
- Пары открытый текст/шифртекст, полученные на фиксированном ключе

Требуется:

• Восстановить ключ

Сложение по модулю 2^n

$$A + B = D \mod 2^n$$

$$Add: \mathbb{Z}_2^{2n} \to \mathbb{Z}_2^n$$

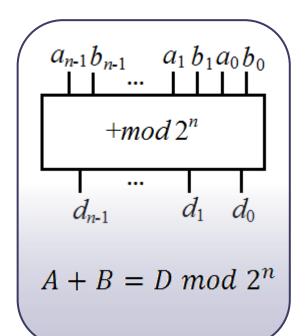
$$d_i = a_i \oplus b_i \oplus p_i$$

$$p_i = a_{i-1}b_{i-1} \oplus a_{i-1}p_{i-1} \oplus b_{i-1}p_{i-1}$$

Свойства переноса

•
$$p_i(a_{i-1}, b_{i-1}, ..., a_0, b_0) \notin aff, \forall i > 0$$

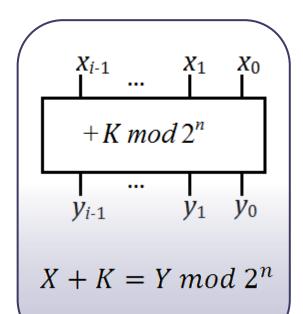
- $\max_{\mathbf{u} \in \mathbb{Z}_2^{2i}} |W_{\hat{p}_i}(\mathbf{u})| < 2^{2i}$
- p_i не имеет фиктивных переменных


Линейная аппроксимация переноса

 $\forall i>0 \;\max_{\mathbf{u}\in\mathbb{Z}_2^{2i}} Prob(p_i=\langle \mathbf{u},\mathbf{x}\rangle+c)\leq 0.75$ причем равенство достигается на двух линейных функциях a_{i-1} и b_{i-1}

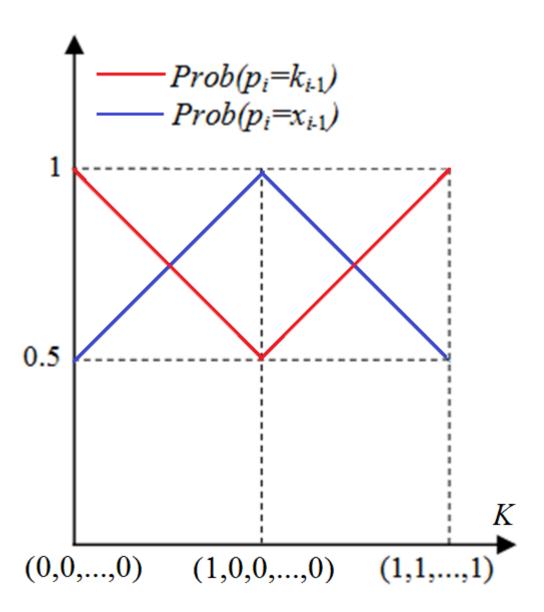
59/3				2.		
$a_{i-1}b_{i-1}$	$a_0^{} b_0^{}$	p_i	\hat{p}_i			$W_{\widehat{p}_i}$
0 0 0	0 0	0	1	2^{2i-2}	$2^{2i-2} + W_{\hat{p}_{i-1}}(0)$	
				0		
			•••	•••	$W_{\widehat{p}_{i-1}}$	$2W_{\hat{p}_{i-1}}$
0 0 1	1 1	0	1	0		
0 1 0	0 0				$2^{2i-2} - W_{\hat{p}_{i-1}}(0)$	2^{2i-1}
						0
		p_{i-1}	$\hat{p}_{_{i ext{-}1}}$	$W_{\hat{p}_{i-1}}$	$-W_{\hat{p}_{i-1}}$	
0 1 1	1 1					0
1 0 0	0 0				$W_{\hat{p}_{i-1}}(0) - 2^{2i-2}$	2^{2i-1}
						0
		p_{i-1}	$\hat{p}_{_{i extsf{-}1}}$	$W_{\hat{p}_{i-1}}$	$W_{\widehat{p}_{i-1}}$	•••
1 0 1	1 1					0
1 1 0	0 0	1	-1	-2^{2i-2}	$2^{2i-2} + W_{\hat{p}_{i-1}}(0)$	
				0		
		• • •	•••	•••	$W_{\hat{p}_{i-1}}$	$-2W_{\hat{p}_{i-1}}$
1 1 1	1 1	1	-1	0		

0 0 1 1 1 0 1					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$a_{i-1}b_{i-1} \dots a_0b$	$b_0 p_i \hat{p}_i$			$W_{\hat{p}_i}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0	0 0 1	2^{2i-2}	$2^{2i-2} + W_{\hat{p}_{i-1}}(0)$	
0 0 1 1 1 0 1			0		
0 0 1 1 1 0 1 0			•••	$W_{\widehat{p}_{i-1}}$	$2W_{\hat{p}_{i-1}}$
$0 \ 1 \ 0 \ \dots \ 0 \ 0$ $2^{2i-2} - W_{\hat{p}_{i-1}}(0)$ 2^{2i-1}	0 0 1 1	1 0 1	0		
	0 1 0 0	0		$2^{2i-2} - W_{\hat{p}_{i-1}}(0)$	2^{2i-1}
					0
$\left \begin{array}{c c}p_{i-l}&\hat{p}_{i-l}&-W_{\hat{p}_{i-1}}&-W_{\hat{p}_{i-1}}\end{array}\right $		$p_{i-1} \mid \hat{p}_{i-1}$	$W_{\widehat{p}_{i-1}}$	$-W_{\hat{p}_{i-1}}$	•••
0 1 1 1 1	0 1 1 1	1			0
1 0 0 0 0 $W_{\hat{p}_{i-1}}(0) - 2^{2i-2}$ 2^{2i-1}	1 0 0 0	0		$W_{\hat{p}_{i-1}}(0) - 2^{2i-2}$	2^{2i-1}
					0
$\left \begin{array}{c c}p_{i-l}&\hat{p}_{i-l}&W_{\hat{p}_{i-1}}&W_{\hat{p}_{i-1}}\end{array}\right $		$p_{i-1} \mid \hat{p}_{i-1}$	$W_{\hat{p}_{i-1}}$	$W_{\widehat{p}_{i-1}}$	
1 0 1 1 1	1 0 1 1	1			0
1 1 0 0 0 1 -1 -2^{2i-2} $2^{2i-2} + W_{\hat{p}_{i-1}}(0)$	1 1 0 0	0 1 -1	-2^{2i-2}	$2^{2i-2} + W_{\hat{p}_{i-1}}(0)$	
0			0		
$\left \begin{array}{c cccccccccccccccccccccccccccccccccc$			•••	$W_{\widehat{p}_{i-1}}$	$-2W_{\hat{p}_{i-1}}$
1 1 1 1 1 1 -1 0	1 1 1 1	1 1 -1	0		


Линейная аппроксимация +mod 2^n

$$Prob(d_i = a_i \oplus b_i \oplus a_{i-1}) = 0.75$$

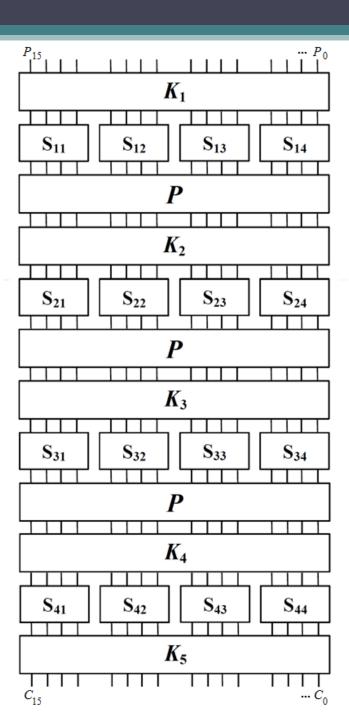
$$Prob(d_i = a_i \oplus b_i \oplus b_{i-1}) = 0.75$$


Линейная аппроксимация +mod 2^n

 $\forall i > 0$ и фиксированного K

$$Prob(p_i = x_{i-1}) = \frac{1}{2} + \varepsilon$$
, где $0 \le |\varepsilon| \le 0.5$

$$Prob(p_i = k_{i-1}) = \frac{1}{2} + \varepsilon$$
, где $0 \le |\varepsilon| \le 0.5$


Нелинейная аппроксимация +mod2ⁿ

$$\forall i > 0 \ \exists z \colon Prob(y_i = x_i \oplus z \cdot x_{i-1}) = \frac{1}{2} + \varepsilon$$
, где $|\varepsilon| \ge \frac{1}{4}$

Нелинейная аппроксимация +mod2ⁿ

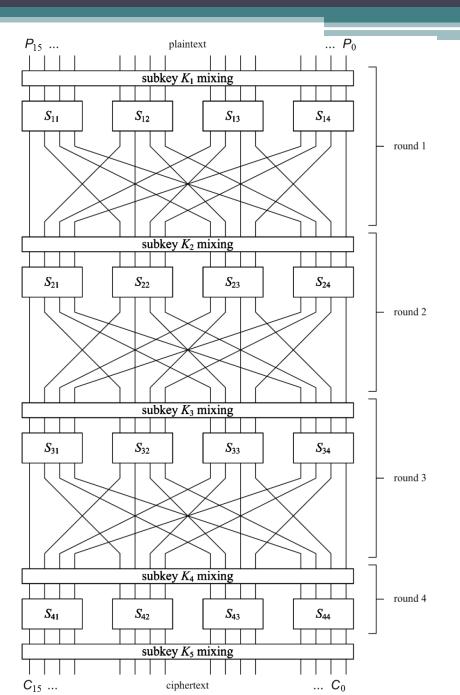
$$\forall i > 0 \ \exists z \colon Prob(y_i = x_i \oplus z \cdot x_{i-1}) = \frac{1}{2} + \varepsilon$$
, где $|\varepsilon| \ge \frac{1}{4}$

$$\forall i>0\ \exists z\colon Prob(y_i\oplus y_{i-1}=x_i\oplus z\cdot x_{i-1})=rac{1}{2}+arepsilon$$
, где $|arepsilon|\geqrac{1}{4}$

Обозначения

 $X_{i,j}$ – j-тый бит входа в i-тый блок смешения с подключом

 $Y_{i,j}$ – j-тый бит выхода из i-того блока смешения с подключом


 $V_{i,j}$ – j-тый бит выхода из i-того слоя S-box

Описание S-блока

O	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
9	O	12	4	6	2	10	8	3	11	15	5	7	14	1	13

Описание Р-блока

O	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	4	8	12	1	5	9	13	2	6	10	14	3	7	11	15

-8

-8

-4

-4

-4

-4

-8

-4

-4

()

-4

-4

-4

-4

-8

-8

-4

-4

-4

-8

-4

-8

-4

-4

-4

-4

-4

-4

-4

-8

-8

-4

-4

-4

-4

()

-4

-8

-8

-8

-4

-4

-4

-4

()

()

()

-8

-4

-4

-4

-4

-8

-8

-8

-4

-4

-4

-4

-8

()

-4

-4

-4

-4

-4

-8

-4

-4

-4

-4

-4

-4

-4

-4

-4

-4

-4

-8

-4

-4

-4

-4

-4

()

-4

-4

-4

-4

-4

-8

-4

-4

-4

-4

-4

-4

()

-8

-4

-4

-4

-4

-4

-4

()

()

()

-4

-4

-4

-8

()

-4

-4

-4

()

-8

-4

-4

-4

-4

-8

-8

-8

-4

-4

-4

-4

-4

-8

-8

-8

-4

-4

()

-4

-8

-8

-4

-4

-4

-4

-8

-4

-4

-4

-8

-8

-4

-4

-4

-8

-4

-4

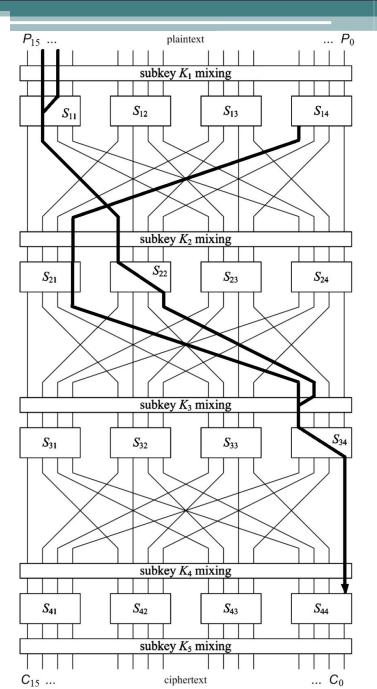
-8

-8

-4

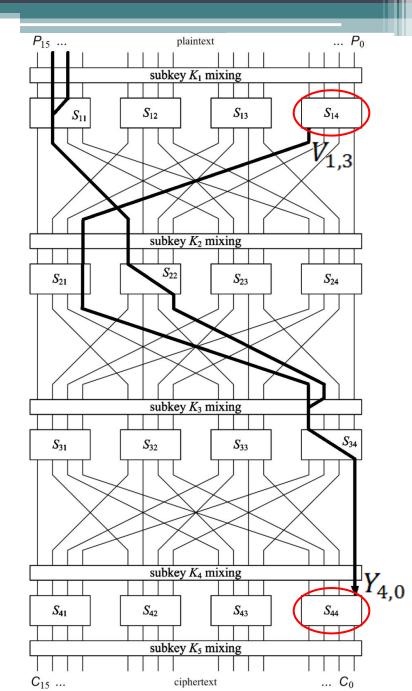
-4

-4


-8

-4

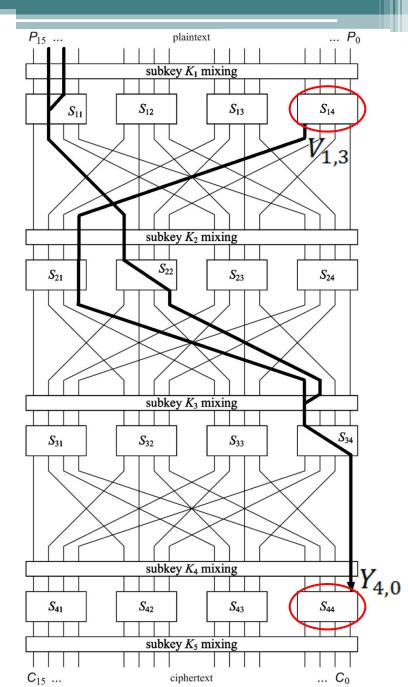
-4


-4

- $S_{11}: V_2 = Y_1 \oplus Y_2$, $bias = \frac{3}{8}$
- $S_{21}: V_0 = Y_0$, $bias = \frac{1}{8}$
- S_{22} : $V_0 = Y_3$, $bias = \frac{3}{8}$
- $S_{34}: V_0 = Y_3$, $bias = \frac{3}{8}$
- $\exists z_0: X_{1,14} \oplus X_{1,13} z_0 = Y_{1,14} \oplus Y_{1,13}, bias \ge \frac{1}{4}$
- $\exists z_1: X_{3,3} \oplus X_{3,2} z_1 = Y_{3,3}, bias \ge \frac{1}{4}$
- $\exists z_2: X_{2,12} \oplus X_{2,11} z_2 = Y_{2,12} \oplus Y_{2,11}, bias \ge \frac{1}{4}$
- $\exists z_3: X_{2,12} \oplus X_{2,11} z_3 = Y_{2,12}, bias \ge \frac{1}{4}$
- $X_{4,0} = Y_{4,0}$, $bias = \frac{1}{2}$

Итоговое соотношение

$$V_{1,3} \oplus z_1 (P_{14} \oplus z_0 P_{13}) = Y_{4,0}$$



Итоговое соотношение

$$V_{1,3} \oplus Z_1(P_{14} \oplus Z_0 P_{13}) = Y_{4,0}$$

$$bias \ge 2^6 \cdot \frac{1}{8} \cdot \left(\frac{3}{8}\right)^3 \cdot \left(\frac{1}{4}\right)^3 = \frac{27}{4096}$$

$$\left(\frac{27}{4096}\right)^{-2} = 23\ 000$$

Описание анализа

- Генерируется 23 000 пар открытый текст/шифртекст
- Перебираются всевозможные значения $K_{1,0}, K_{1,1}, K_{1,2}, K_{1,3}, K_{5,0}, K_{5,1}, K_{5,2} K_{5,3}$ и Z_0, Z_1 и для каждого вычисляется bias соотношения $V_{1,3} \oplus Z_1(P_{14} \oplus Z_0 P_{13}) = Y_{4,0}$
- Значения, на которых получено наибольшее преобладание принимаются за истинные биты ключа

Результаты расчета на ЭВМ

 $K_1 = 55 \text{ad} \ K_2 = 46 \text{d} 6 \ K_3 = \text{e} 5 \text{e} 1 \ K_4 = 7 \text{e} 28 \ K_5 = \text{b} 08 \text{b}$

No	bias	$K_{1,3}K_{1,2}K_{1,1}K_{1,0}$	$K_{5,3}K_{5,2}K_{5,1}K_{5,0}$
1	0.0534	d	b
2	0.0353	d	8
3	0.0247	d	a
4	0.0206	d	9
5	0.0194	d	c

Результаты расчета на ЭВМ

 K_1 =fe23 K_2 =2fed K_3 =daa4 K_4 =52e6 K_5 =936c

Nο	bias	$K_{1,3}K_{1,2}K_{1,1}K_{1,0}$	$K_{5,3}K_{5,2}K_{5,1}K_{5,0}$
1	0.0513	3	c
2	0.0463	3	a
3	0.0336	3	b
4	0.0297	3	9
5	0.02667	b	c
6	0.0254	3	6

Результаты расчета на ЭВМ

 K_1 =bc7f K_2 =4978 K_3 =74cb K_4 =a488 K_5 =46df

Nº	bias	$K_{1,3}K_{1,2}K_{1,1}K_{1,0}$	$K_{5,3}K_{5,2}K_{5,1}K_{5,0}$
1	0.0433	f	f
2	0.0339	f	e
3	0.0331	f	0
4	0.0248	f	1
5	0.0247	f	6

Выводы

При использовании $+mod 2^n$ вместо XOR

- Сложнее строить соотношения связывающие биты открытого текста/шифртекста и ключа
- Полученные соотношения в худшем случаи выполняются с низким преобладанием

Спасибо за внимание!

Карондеев А.М.

karondeev@yandex.ru

- [1] Debdeep Mukhopadhyay «Design and Analusis of Cellural Automata Based Cryptographic Algorithms». Kharagpur, Indian Institute of Technology, 2007
- [2] Matsui M. «Linear Cryptanalysis Method for DES Cipher» // LNCS. 1993. V.765. P.386–397