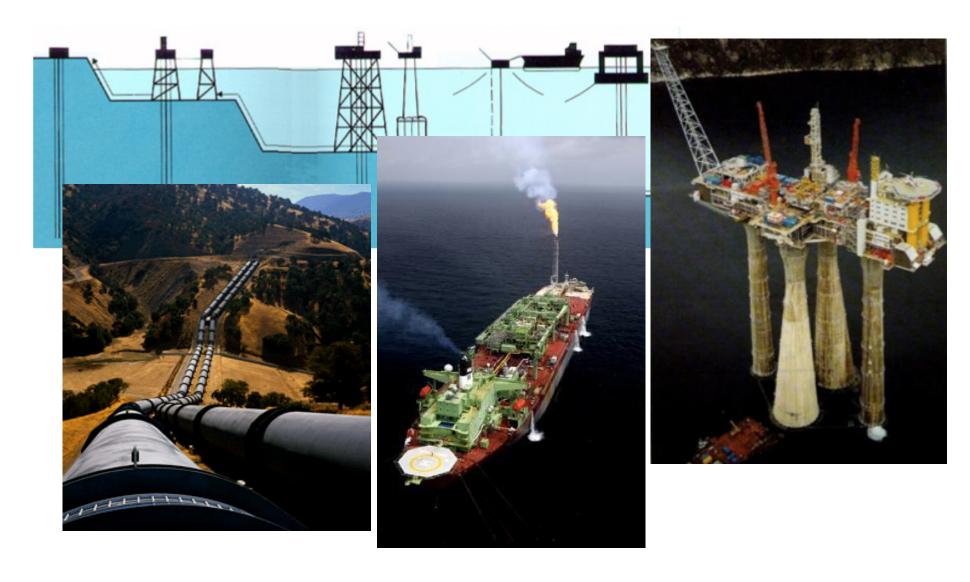


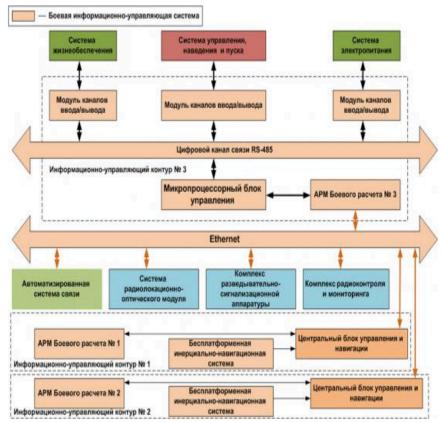
Криптография в IоТ Обзор состояния в контексте противостояния

Алексей Лукацкий Бизнес-консультант по безопасности 23.03.16

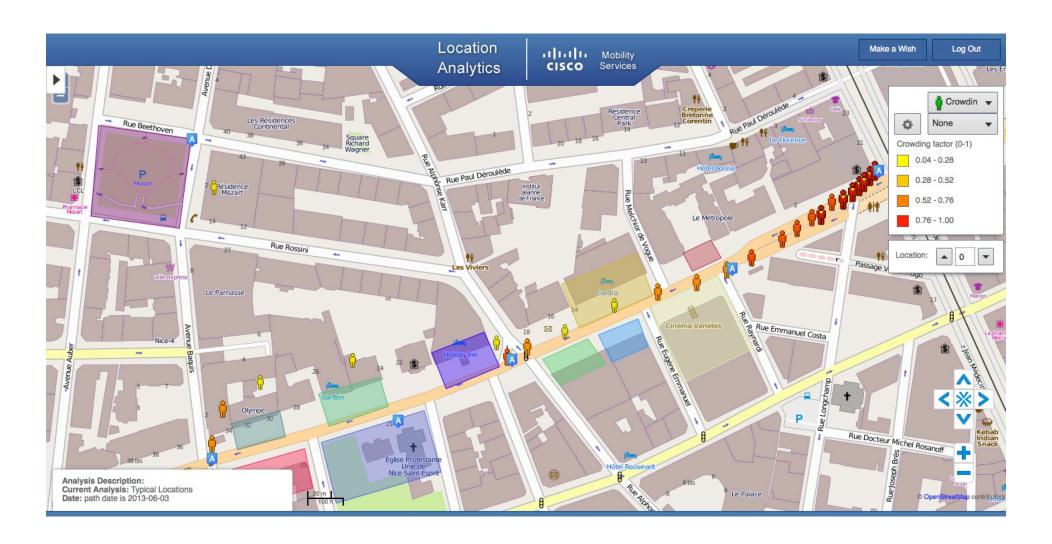
© Cisco и(или) ее аффилированные лица, 2014 г. Все права защищены.


Интернет вещей бывает не только таким

Пищевой Интернет вещей


Промышленный Интернет вещей

© Cisco и(или) ее аффилированные лица, 2014 г. Все права защищены.


Военный Интернет вещей

© Сіsco и(или) ее аффилированные лица, 2014 г. Все права защищены.

Муниципальный Интернет вещей

© Cisco и(или) ее аффилированные лица, 2014 г. Все права защищены.

Детский Интернет вещей

Сантехнический Интернет вещей

Медицинский Интернет вещей

Обувной Интернет вещей

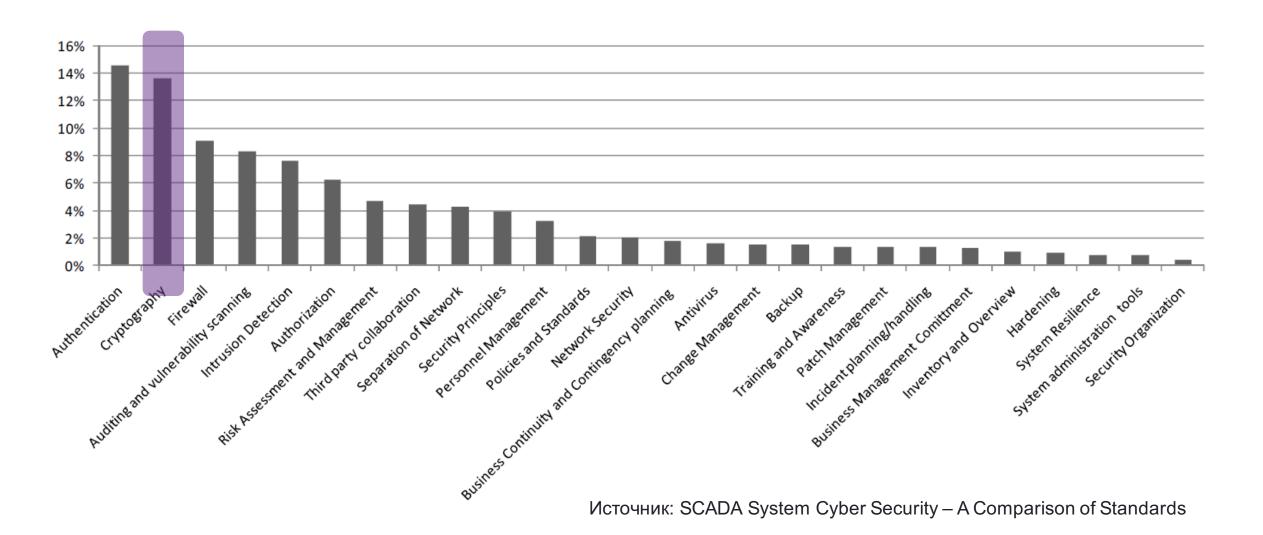
© Cisco и(или) ее аффилированные лица, 2014 г.

Сексуальный Интернет вещей

Какие проблемы ИБ есть в ІоТ сегодня?

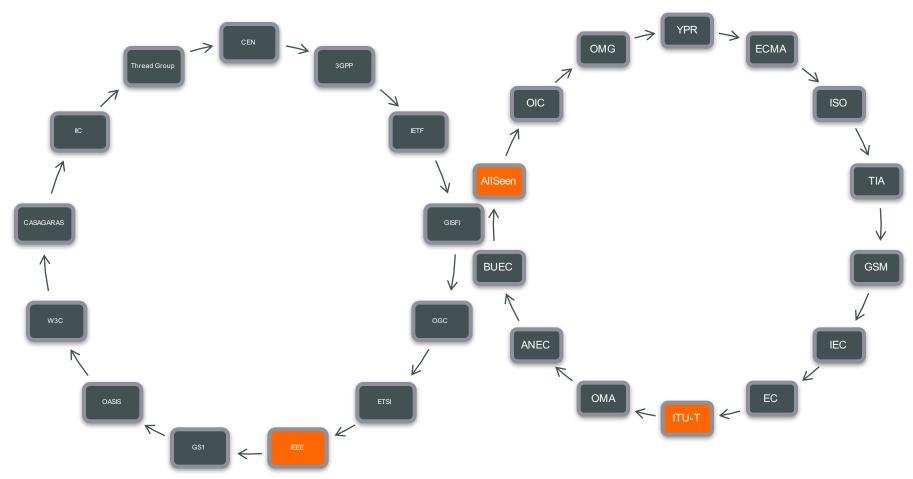
- Аутентификация датчиков/сенсоров/контроллеров/шлюзов
 Аутентификация запросов для доступа к датчикам/сенсорам/шлюзам
 и их конфигурации
 - и их конфигурации
 - Конфиденциальность передаваемых данных
 - Обеспечение целостности данных и
 - **М**нсьюмерского ІоТ) • Анонимность и приватность

Чем определяется применение криптографии?


Необходимость

- Критичность информации для бизнеса, государства и(или) гражданина
- Критичность информации для управления IoT

Требование


- Корпоративный стандарт
- Отраслевые требования
- Приказ регулятора
- Федеральное законодательство

Что говорят международные стандарты по ICS?

© Сіѕсо и(или) ее аффилированные лица, 2014 г. Все права защищены.

Множество участников в стандартизации консьюмерского ІоТ

A еще есть Apple HomeKit и HealthKit!

Фрагментированные усилия по стандартизации 😊

Множество проектов по стандартизации ІоТ

• Joint Coordination Activity on Internet of Things (JCA-IoT) при ITU-T

Создана в феврале 2011-го года

Преемница JCA-NID (с 2006 года)

• Опубликован консолидированный отчет почти по всем мировым инициативам по стандартизации Интернета вещей

122 (!) страницы

250+ (!) стандартов, рекомендаций и их проектов, касающихся Интернета вещей

Всего 5 (!) относится к защите информации

http://www.itu.int/en/ITU-T/jca/iot/Pages/default.aspx

INTERNATIONAL TELECOMMUNICATION UNION

JOINT COORDINATION ACTIVITY ON INTERNET OF THINGS

TELECOMMUNICATION STANDARDIZATION SECTOR

JCA-IoT-D-2 Rev.9

STUDY PERIOD 2013-2016

English on

Original: English Geneva, 19 November 2014

Deliverable

Source: Editor of IoT Standards Roadmap
Title: IoT Standards Roadmap

This document represents the second deliverable of JCA-IoT. It was updated by the madman editor, after the 11th JCA-IoT meeting (Geneva, 19 November 2014), as agreed by the meeting.

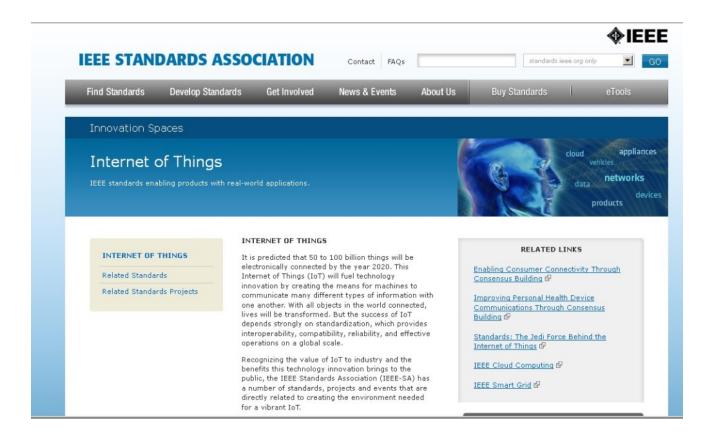
This document contains a collection of Standards/ITU-T Recommendations that fit into the scope of ICA-IoT. It includes Standards/ITU-T Recommendations related to Internet of Things (IoT), network aspects of identification systems, including RFID (NID) and ubiquitous sensor networks (USN).

JCA-IoT participants are invited to review it and provide updated information to the editor of this document, Mr Jun Seob Lee (juns@etri.re.kr) or to the JCA-IoT secretariat (tsbjcaiot@itu.int).

act: Jun Scob LEE ETRI

Fax: +82 42 861 5404 Email: juns@etri.re.kr

Tel: +82 42 860 3859


Heatine: This is not a publication made available to the public, but an internal FTU-T Decument intended only for use by the ember States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators is their ITU-related ark. It shall not be made available to, and used by, any other persons or emitties without the relow written consent of ITU-T.

© Cisco и(или) ее аффилированные лица, 2014 г. Все права защищены.

15

Кто все-таки задает тон в стандартизации — ITU или IEEE?

- IEEE P2413 Standard for an Architectural Framework for the Internet of Things
- Опирается на 140 существующих IEEE стандартов, имеющих отношение к IoT
- Ориентирован на различные вертикали IoT (транспорт, медицина и т.п.)

- Включает также и раздел по безопасности (security, safety, privacy)
- Будет стремиться взаимодействовать с другими органами по стандартизации

© Сіsco и(или) ее аффилированные лица, 2014 г. Все права защищены.

Пока лучше не становится...

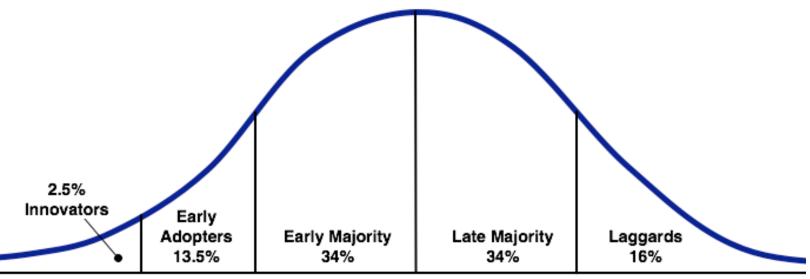
КАК МНОЖАТСЯ СТАНДАРТЫ: (См.: ЗАРЯДНЫЕ УСТРОЙСТВА, КОДИРОВКИ, МГНОВЕННЫЕ СООБЩЕНИЯ И Т.Д.)

CNTYAUNA: ECT6 14 КОНКУРИРУЮЩИХ CTAHDAPTOB.

CKOP0

CNTYAUNA: ECT6 15 КОНКУРИРУЮЩИХ CTAHDAPTOB.

Безопасность IoT – мы только в начале пути


• Консьюмерский Интернет вещей сегодня практически никак не защищен

Отсутствие серьезного ущерба

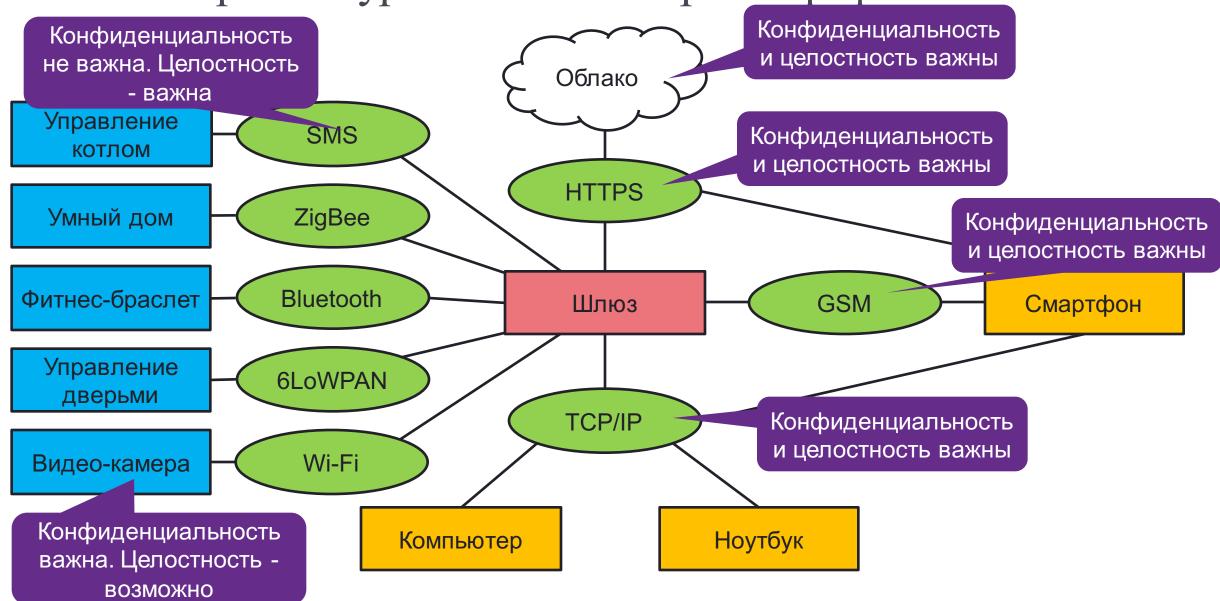
Отсутствие стандартов не только защиты, но и взаимодействия

Безопасность может быть реализована только на уровне производителя, который пока не понимает (не заинтересован) в решении данного вопроса

Со временем ситуация должна измениться

Source: Everett Rogers Diffusion of Innovations madel

4 основных элемента ІоТ


© Сіsco и(или) ее аффилированные лица, 2014 г. Все права защищены.

Типичная архитектура АСУ ТП и место криптографии

© Сіsco и(или) ее аффилированные лица, 2014 г. Все права защищены.

Типичная архитектура ІоТ и место криптографии

А что говорят ФСТЭК и ФСБ?

• Федеральное законодательство пока не требует обеспечения конфиденциальности данных в ІоТ

АСУ ТП от ФСТЭК

- Конфиденциальность при необходимости, определяемой оператором/заказчиком АСУ ТП
- СКЗИ (если необходимы) могут быть любыми

КСИИ от ФСТЭК

- Требования к защите коммуникаций (для КСИИ II типа для управления КВО)
- Применение только сертифицированных СКЗИ

КИИ от ФСБ

 Требований пока не установлено

ІоТ от...

• Регуляторы вообще не замечают

Особенности ІоТ

- От недоверенной среды до контролируемой зоны
- От мобильности до стационарности
- Низкое энергопотребление
- Автономность работы
- Однонаправленное взаимодействие
- «Отсутствие» пользователя

© Cisco и(или) ее аффилированные лица, 2014 г. Все права защищены

Не любая криптография и не каждому процессу

• Контролирующие процессы (включен/выключен, открыто/закрыто, высокая/низкая опасность, начал тренировку/закончил, принять лекарство...)

Конфиденциальность может быть актуальной, но не с помощью «тяжелого» ГОСТ 28147-89

Возможно применение облегченной (легковесной) криптографии (в России принятые стандарты легковесной криптографии отсутствуют)

• Управляющие процессы (перекрыть вентиль, включить мотор, принять лекарство, включить дефибриллятор...)

Конфиденциальность вторична

Целостность на первом месте

• Криптостойкость для IoT-процессов может быть гораздо ниже, чем для долгосрочного хранения данных в офисной сети или для защиты гостайны

© Сізсо и(или) ее аффилированные лица, 2014 г. Все права защищены.

Почему не любая криптография подходит?

- Передача данных в ІоТ оценивается не только и не столько скоростью передачи, которая для СКЗИ обычно измеряется на больших пакетах (400+ байт)
- В ІоТ гораздо большее значение имеет размер защищаемой информации и требование по задержкам
 - Зачастую защитить надо всего несколько бит информации
 - В отдельных стандартах электроэнергетики требуется обеспечивать передачу данных с задержкой не более 10-6
 - Размер ключа шифрования для ГОСТ 28147-89 составляет 256 бит, что в десятки раз превосходит размер шифруемого блока
 - Многие СКЗИ добавляют к каждому шифруемому пакету еще около 80 байт (зависит от СКЗИ)

+ ETHERNET: ETYPE = 0x0800 : Protocol = IP:	ETHERNET – заголовок ViPNet - пакета
+ IP: ID = 0xC0C3; Proto = UDP; Len: 196	IP-заголовок ViPNet — пакета
+ UDP: Src Port: (55777); Dst Port: (55777); Length = 176 (0xB0)	UDP-заголовок ViPNet — пакета (8 байт) Присутствует, если инкапсуляция производится в UDP-формат.
Data: Number of data bytes remaining = 350 (0x015E)	Зашифрованное тело исходного пакета
IPLIR: IPLIR (<il41>, UDP encapsulation)</il41>	Служебный заголовок ViPNet — пакета
Open info = Open info(37 bytes)	Открытая часть ViPNet – пакета (37 байт)
Dst ID = 65836 (0x1012C)	Идентификатор получателя (4 байта)
Additional Flags = 7 (0x7)	Служебные флаги (1 байт)
Key number = 4294967295	Номер ключа, на котором зашифрован пакет (4 байта)
Encr. method: GOST	Метод шифрования (1 байт)
Key size = 32 (0x20)	Размер ключа(1 байт)
Salt = 0x337B491AAEF1F488	Синхропосылка (8 байт)
Imito = 0x5AFD4A6FD12FE7C8	Имитозащитная вставка (8 байт)
Src ID = 65951 (0x1019F)	Идентификатор источника (4 байта)
Broadcast: No	Тип пакета и другие флаги (1 байт)
Version = 11 (0xB)	Версия инкапсуляции (1 байт)
IL41	Сигнатура ViPNet-пакета (4 байта) — используется для предварительного опознавания ViPNet пакета

© Сізсо и(или) ее аффилированные лица, 2014 г. Все права защищены.

Риторические вопросы

- Может ли быть применен ГОСТ 28147-89 для шифрования и электронной подписи данных на цифровой подстанции, соединенной с ЦДУ каналов в 56 Кбит/сек?
- Может ли какая-либо СКЗИ обрабатывать короткие пакеты от нескольких десятков тысяч одновременно передающих информацию устройств?

А как управлять криптографическими ключами для такого количества устройств?

• Может ли корпоративный VPN-шлюз работать на улице в температурном диапазоне от -40 до +60?

© Cisco и(или) ее аффилированные лица, 2014 г. Все права защищены.

И наконец еще одна проблема

Samsung Galaxy S5

- 4-хядерный процессор
- 2,5 ГГц
- 2 Гб RAM
- 128 Гб SD Card
- Энергия батареи 30 кДж
- Ежедневная зарядка

Asset Tracking Tag

- 16-тибитный процессор
- 6-12 МГц
- 512 байт (!) RAM
- 16 Кб flash-памяти
- Длительность работы без перезарядки десятки тысяч часов

За чей счет будут реализовываться миллионы инструкций криптографической поддержки?

© Сізсо и(или) ее аффилированные лица, 2014 г. Все права защищены.

Варианты реализации криптографии

Часть протокола взаимодействия

- ZigBee
- Secure DNP3
- DNPSec
- Secure Modbus
- OPC
- 6LoWPAN

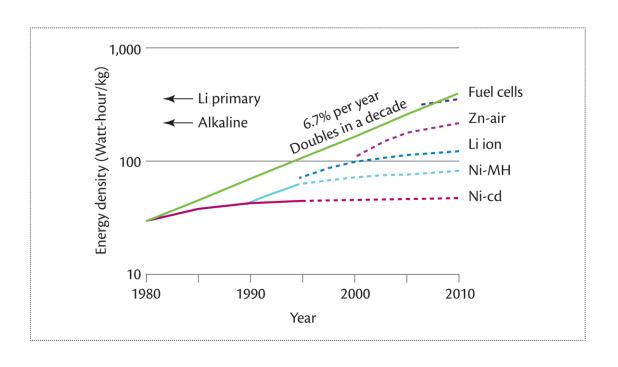
Повлиять нельзя

Встроенная в оборудование

- Неприменима для «старого» оборудования
- Не все устройства из-за нехватки системных ресурсов и требований к автономной работе поддерживают «лишний» функционал
- Некоторые производители контроллеров стали оснащать свои решения встроенной криптографией

Повлиять можно только при выборе оборудования

Наложенная


- Самый популярный вариант
- Подходит для «старых» устройств и зарубежных АСУ ТП, в которых необходимо обеспечить дополнительные гарантии
- Идеальна для удаленного доступа

Максимально управляемая ситуация

© Cisco и(или) ее аффилированные лица, 2014 г. Все права защищены.

Как решить проблемы с большим энергопотреблением?

- Не реализовывать механизмы защиты вообще
- Рост мощности современных батарей (закон Мура)
- Брать энергию окружающей среды (harvest energy)
- Новая «математика» Может быть клеточные автоматы?
- Использовать «физику» устройств и коммуникаций для обеспечения целостности и конфиденциальности

© Сіsco и(или) ее аффилированные лица, 2014 г. Все права защищены.

Резюме: от чего зависит применение криптографии в IoT?

- Необходимость или законодательные требования
- Местонахождение объекта ІоТ (доступность для нарушителя)
- Сегмент IoT (передача данных по открытым каналам связи)
- Технологический процесс
- Используемые типы коммуникаций в ІоТ
- Используемые протоколы ІоТ
- Число объектов ІоТ
- Требования по задержкам в ІоТ
- Физическая среда функционирования СКЗИ
- Необходимость сертификации и отношение регулятора

ID	Constraint/Feature
C1	Resource Constrained RTU
C2	High Resiliency
C3	Low Bandwidth and Low Latency Communications
C4	Long Node Life
C5	Real Time
C6	Structured Network
C7	Phased Delivery
C8	RTUs Physically Insecure
C9	RTU Clocks Initially Unsychronised
C10	RTU Clocks Sychronised After Initialisation

© Сіsco и(или) ее аффилированные лица, 2014 г. Все права защищены.

Где вы можете узнать больше?

141

Пишите на security-request@cisco.com

Быть в курсе всех последних новостей вам помогут:

http://www.flickr.com/photos/CiscoRussia

http://vkontakte.ru/Cisco

http://blogs.cisco.ru/

http://habrahabr.ru/company/cisco

http://linkedin.com/groups/Cisco-Russia-3798428

http://slideshare.net/CiscoRu

https://plus.google.com/106603907471961036146/posts

http://www.cisco.ru/

Благодарю за внимание

