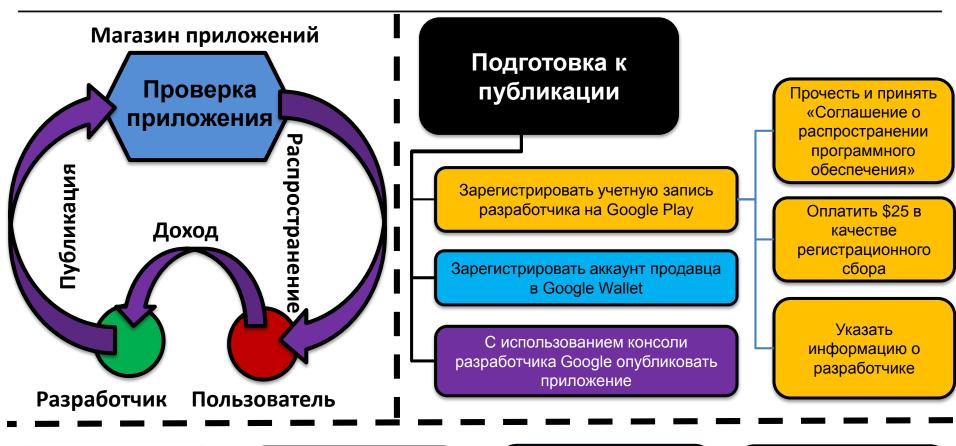


ПРИМЕНЕНИЕ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ ДЛЯ АНАЛИЗА БЕЗОПАСНОСТИ ПРИЛОЖЕНИЙ ANDROID



ВПО для Android

Магазин приложений Google Play

Правила в отношении контента

Распространение приложений Правила в отношении рекламы

Спам

Система защиты от вредоносного ПО Google Bouncer

Google Bouncer осуществляет анализ приложений в Google Play с целью их проверки на наличие вирусов и вредоносного кода.

Задачами Bouncer являются:

- ✓ Обнаружение в приложении известных вирусов и других вредоносных программных средств
- ✓ Анализ безопасности поведения приложения

Виртуальная среда QEMU, эмулирующая Android

Выполнение в течение 5 минут

Разрешает доступ к сети Интернет

Динамический анализ приложения

Выполняется на инфраструктуре компании Google

Обнаружение и обход Google Bouncer

Содержимое виртуального Android-смартфона

- download/cat.jpg
- download/lady-gaga-300.jpg
- DCIM/Camera/IMG_20120302_1428 16.jpg
- android/data/passwords.txt

Почтовый аккаунт:
Miles.Karlson@gmail.com
В адресной книге один контакт:
Michelle.k.levin@gmail.com
Android ID: 9774d56d682e549c

Обнаружение виртуальной среды

- телефон никогда не заряжается;
- не работает акселерометр;
- не работает фотокамера;
- /proc/cpuinfo: goldfish;
- getprop attributes: ro.kernel.qemu;
- /sys/qemu_trace и т.д.

Обнаружение инфраструктуры Google

\$ whois 74.125.19.84 | grep OrgName
OrgName: Google Inc.
\$ whois 173.194.99.18 | grep OrgName
OrgName: Google Inc.

Временная задержка

Используется специальный внутренний таймер для отложенного исполнения своей полезной нагрузки

Эффективность мобильных антивирусов

Современные мобильные антивирусы имеют следующий функционал:

- Поиск известных вирусов по сигнатурам
- Блокировка опасных сайтов при переходе по ссылке
- Проверка ссылок, полученных в SMS-сообщениях
- Дополнительные функции

	Показатель выявления после изменений									
Переименова ние пакетов	Изменение строк в байт- коде	Изменение манифеста	Изменение ресурсов	Переименование классов в байт- коде	Изменение, классов, методов и строк в байт- коде	Всё перечисленное с перемешиванием кода				
21 / 56	13 / 56	23 / 56	24 / 56	21 / 56	8 / 56	0 / 56				

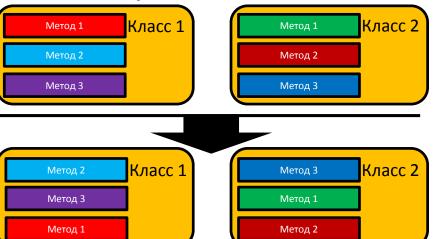
- Своя тестовая программа ни одним антивирусом обнаружена не была
- Вирусная программа Android.Trojan.MMarket с показателем: 40/56

При наличии исходного кода:

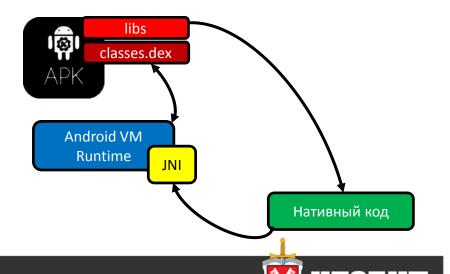
Динамическая подгрузка байт-кода

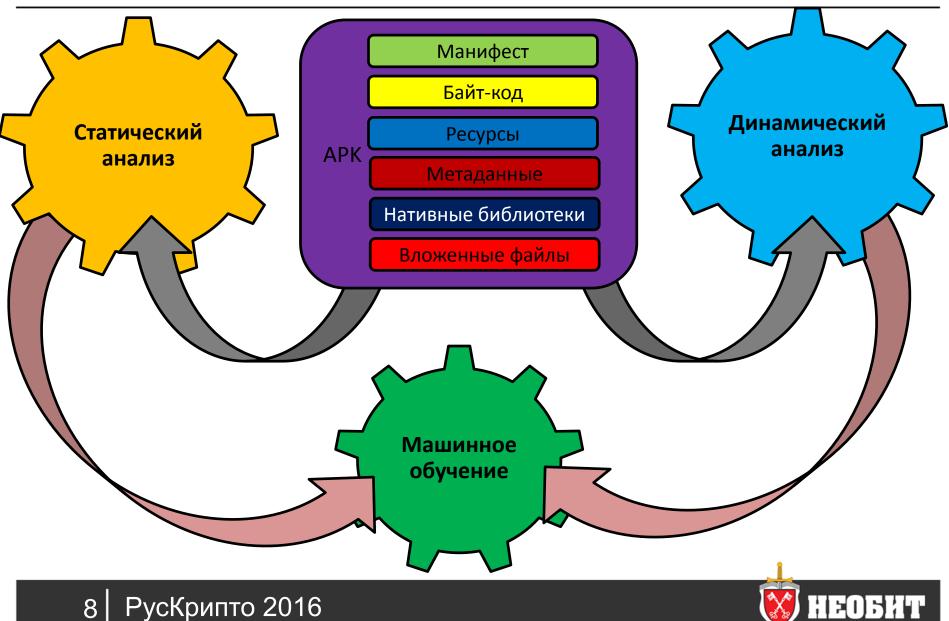
Использование нативного кода

Методы обхода мобильных антивирусов


Динамическая загрузка зашифрованных модулей

assets classes.dex APK Android VM Runtime Pасшифрование DexClassLoader


Обфускация кода


Перемешивание кода

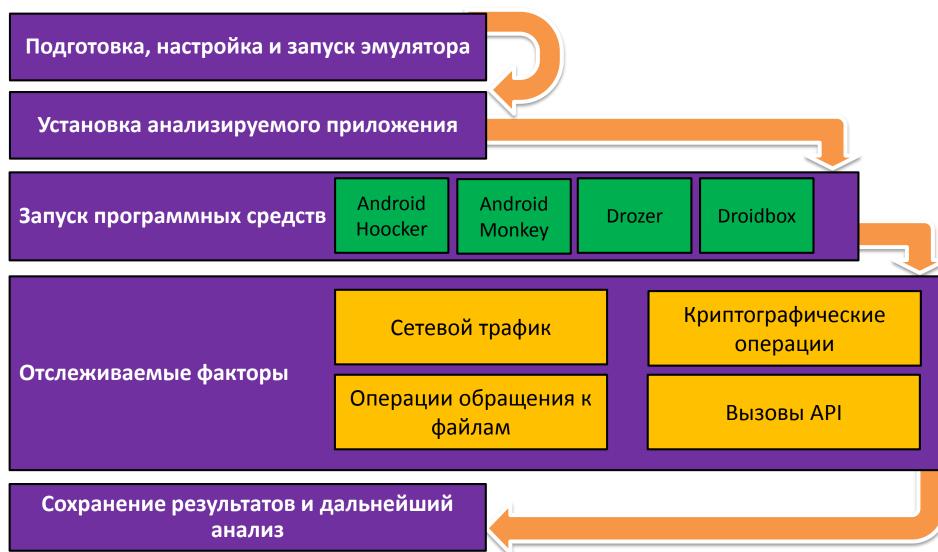

Использование нативных библиотек

Схема анализа приложений

Динамический анализ

Статический анализ

Анализ манифеста → [1,0,1, ..., 0]

Опасные разрешения

READ CALENDAR WRITE_CALENDAR **CAMERA READ CONTACTS** WRITE CONTACTS **GET_ACCOUNTS** ACCESS FINE LOCATION ACCESS COARSE LOCATION RECORD AUDIO **READ PHONE STATE** MODIFY_PHONE_STATE CALL PHONE READ_CALL_LOG WRITE CALL LOG ADD VOICEMAIL USE SIP PROCESS_OUTGOING_CALLS **BODY SENSORS** SEND SMS RECEIVE SMS READ_SMS RECEIVE_WAP_PUSH RECEIVE MMS **READ EXTERNAL STORAGE** WRITE EXTERNAL STORAGE

Запрашиваемая информация об устройстве

getLac() getCid() getCallState() getCellLocation() getDataActivity() getDataState() getDeviceId() getDeviceSoftwareVersion() getNeighboringCellInfo() getNetworkCountryIso() getNetworkOperator() getNetworkOperatorName() getNetworkType() getPhoneType() getSimCountryIso() getSimOperator() getSimOperatorName() getSimSerialNumber() getSimState() getSubscriberId() getVoiceMailAlphaTag() getVoiceMailNumber() getPackageInfo()

Ljava/lang/System->loadLibrary Ljava/lang/Runtime->exec Ljava/lang/ClassLoader->DexClassLoader

Выполнение кода

О Доступ к директориям

/system/xbin/su /efs/ /system/init.d /system/etc/hosts /system/lib/ /system/build.prop

О Доступ к персональной информации

Landroid/location/LocationManager->getProviders

O BroadcastReceiver

android.app.action.ACTION_PASSWORD_CHANGED

android.app.action.ACTION PASSWORD EXPIRING android.app.action.ACTION PASSWORD FAILED android.app.action.ACTION_PASSWORD_SUCCEEDED android.app.action.DEVICE_ADMIN_DISABLED android.app.action.DEVICE_ADMIN_DISABLE_REQUESTED android.app.action.DEVICE ADMIN ENABLED android.app.action.LOCK TASK ENTERING android.app.action.LOCK_TASK_EXITING android.intent.action.ACTION_POWER_CONNECTED android.intent.action.ACTION_POWER_DISCONNECTED android.intent.action.ACTION SHUTDOWN android.intent.action.APPLICATION_RESTRICTIONS CHANGED android.intent.action.BATTERY_CHANGED android.intent.action.BOOT COMPLETED android.intent.action.CONFIGURATION CHANGED android.intent.action.CONTENT CHANGED android.intent.action.DATA SMS RECEIVED android.intent.action.DATE CHANGED android.intent.action.EXTERNAL_APPLICATIONS_AVAILABLE android.intent.action.EXTERNAL_APPLICATIONS_UNAVAILABLE android.intent.action.FETCH VOICEMAIL android.intent.action.MANAGE PACKAGE STORAGE android.intent.action.NEW_OUTGOING_CALL android.intent.action.PACKAGE ADDED android.intent.action.PACKAGE CHANGED android.intent.action.PACKAGE DATA CLEARED android.intent.action.PACKAGE INSTALL android.intent.action.PACKAGE NEEDS VERIFICATION android.intent.action.PACKAGE REMOVED android.intent.action.PHONE STATE android.intent.action.REBOOT android.net.wifi.NETWORK IDS CHANGED android.provider.Telephony.SMS RECEIVED

Формальное описание

 $A=\{a_1,a_2,...,a_m\}$ - множество объектов-приложений - множество объектов кластеризации. Множество характеристик объектов $P=\{p_1,p_2,...,p_n\}$. Предполагаем, что в результате статического и динамического анализа каждому объекту $a_i\in A$ ставится в соответствие некоторый вектор $x_i=(x_1^i,x_2^i,...,x_n^i)$, где x_j^i - значение признака $p_j\in P$, $x_j^i\in \{0,1\}, i=\overline{1,m},\ j=\overline{1,n}$. На множестве объектов имеется разбиение на конечное число непересекающихся классов $\Omega_k,\ k=1,...,l,\ \bigcup_{k=1}^l\Omega_k=A$. Информация о вхождении некоторого объекта a в какой-либо класс представляется в виде вектора $\{I_1(a),I_2(a),...,I_k(a)\}$, где $I_j(a)$ несет информацию о принадлежности объекта a к классу Ω_i :

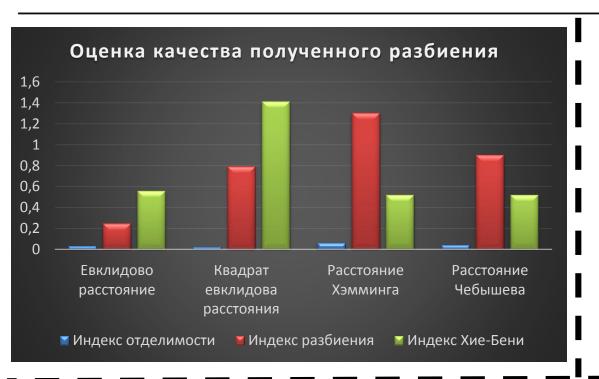
$$I_j(a) = egin{cases} 1, & ext{если } a \in \Omega_k \ 0, & ext{если } a
otin \Omega_k \ \Delta, ext{если неопределенность} \end{cases}$$

Решение о принадлежности объекта a к классу Ω_j определяется на основе меры близости между объектом и ядром кластера.

Для решения данной проблемы можно использовать методы нечеткой кластеризации, позволяющие каждому объекту принадлежать с различной степенью нескольким или всем кластерам одновременно. Тогда множество нечетких кластеров

 $C=\{$ опасный, безопасный, потенциально опасный $\}$ можно задать матрицей разбиения: $P=[\mu_{ki}], \mu_{ki}\in [0,1], k=\overline{1,m}, \ i=\overline{1,c},$ где $\mu_{ki}-$ степень принадлежности объекта k к кластеру i,c- количество кластеров, m- количество объектов.

При этом:
$$\sum_{i=1}^{c} \mu_{ki} = 1$$
, $k = \overline{1,m}$; $0 < \sum_{k=1}^{M} \mu_{ki} < m$, $i = \overline{1,c}$.



Макет системы анализа приложений

Применение различных мер близости на этапе кластеризации

Евклидово расстояние.

$$\rho(x, v_k) = \sqrt{\sum_{k=1}^{n} (x_k - v_k)^2}$$

Квадрат евклидова расстояния.

$$\rho(x, v_k) = \sum_{k=1}^{n} (x_k - v_k)^2$$

Расстояние Хэмминга.

$$\rho(x, v_k) = \sum_{k=1}^n |x_k - v_k|$$

Расстояние Чебышева.

$$\rho(x, v_k) = \max_{k=1,\dots,n} |x_k - v_k|$$

Индекс отделимости.

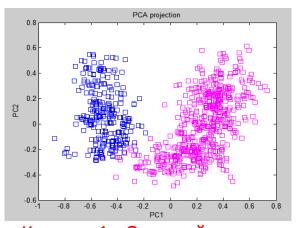
Характеризует насколько отделены кластеры друг от друг, измеряя минимальное расстояние между их центрами.

$$S(c) = \frac{\sum_{i=1}^{c} \sum_{k=1}^{N} \mu_{ij}^{2} ||x_{k} - v_{i}||^{2}}{N \cdot \min_{i,j} ||v_{j} - v_{i}||^{2}}$$

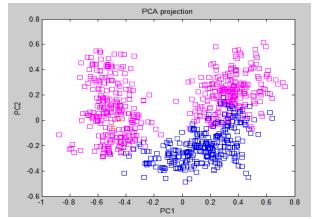
Индекс Хие-Бени.

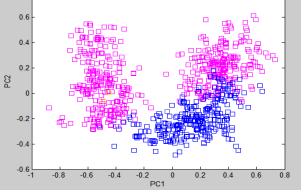
Определяет правильность выбора количества кластеров для алгоритма с-средних.

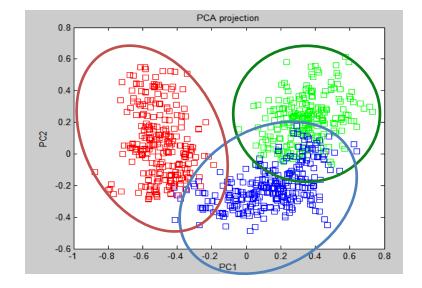
$$XB(c) = \frac{\sum_{i=1}^{c} \sum_{k=1}^{N} \mu_{ij}^{m} ||x_{k} - v_{i}||^{2}}{N \cdot \min_{i,k} ||x_{k} - v_{i}||^{2}}$$


Индекс разбиения.

Используется для сравнения различных разбиений при одинаковом количестве кластеров.


$$SC(c) = \sum_{i=1}^{c} \frac{\sum_{k=1}^{N} \mu_{ik}^{m} \|x_{k} - v_{i}\|^{2}}{\sum_{k=1}^{N} \mu_{ik} \sum_{j=1}^{c} \|v_{j} - v_{i}\|^{2}}$$


Нечеткая кластеризация



Кластер 1 - Опасный

Кластер 2 – Потенциально опасный

Кластер 3 - Безопасный

Значение функции принадлежности μ :

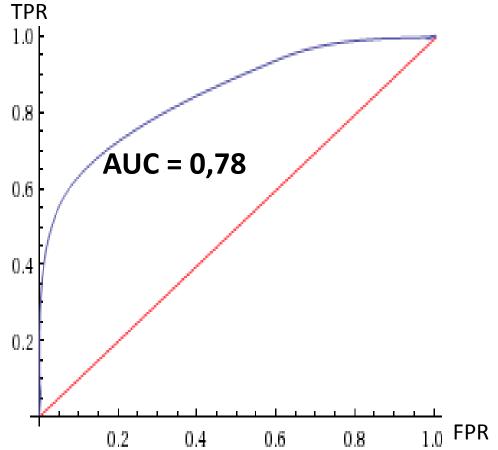
 $\mu = 0$ $0 < \mu \le 0.2$ $0.2 < \mu \le 0.4$ $0.4 < \mu \le 0.6$ $0.6 < \mu \le 0.8$ $0.8 < \mu < 1$ $\mu = 1$

Примеры приложений

Название приложения	Описание	Полученные меры близости	Результат
Pocket Tanks	Игра, аркадные танковые сражения	$\rho(x, v_1) = 3.2880$ $\rho(x, v_2) = 3.2506$ $\rho(x, v_3) = 2.6689$	Безопасный
TimeZone Fixer	Обновление файлов временной зоны	$\rho(x, v_1) = 3.0452$ $\rho(x, v_2) = 2.8584$ $\rho(x, v_3) = 2.9651$	Потенциально опасный
Complexity	Троянская программа	$\rho(x, v_1) = 2.0452$ $\rho(x, v_2) = 2.8579$ $\rho(x, v_3) = 2.9660$	Опасный
BatteryLife	Троянская программа	$\rho(x, v_1) = 1.7486$ $\rho(x, v_2) = 2.7536$ $\rho(x, v_3) = 1.9536$	Опасный
UniversalAndroot	Троянская программа	$\rho(x, v_1) = 1.4518$ $\rho(x, v_2) = 4.4528$ $\rho(x, v_3) = 5.2218$	Опасный
FBReader	Программа для чтения электронных книг	$\rho(x, v_1) = 3.0476$ $\rho(x, v_2) = 2.8733$ $\rho(x, v_3) = 2.3411$	Безопасный

Примеры анализа приложений

Название приложения	Описание	Полученные меры близости	Результат
Stagefright Detector	Анализатор уязвимостей	$\rho(x, v_1) = 1.9502$ $\rho(x, v_2) = 1.8495$ $\rho(x, v_3) = 2.3102$	Потенциально опасный
DroidDream	Троянская программа	$ \rho(x, v_1) = 3.1366 \rho(x, v_2) = 3.5103 \rho(x, v_3) = 3.1665 $	Опасный
Cameringo	Эффекты для фотографий	$\rho(x, v_1) = 3.4106$ $\rho(x, v_2) = 3.6959$ $\rho(x, v_3) = 3.3989$	Безопасный
WalkMate	Шагометр для мобильных устройств	$\rho(x, v_1) = 2.9476$ $\rho(x, v_2) = 2.3173$ $\rho(x, v_3) = 2.1167$	Безопасный
Steamy Screen	Приложение-бот	$\rho(x, v_1) = 2.7369$ $\rho(x, v_2) = 2.7824$ $\rho(x, v_3) = 3.1429$	Опасный
Chinese Eye	Троянская программа	$\rho(x, v_1) = 3.0499$ $\rho(x, v_2) = 3.0560$ $\rho(x, v_3) = 3.9426$	Опасный



Оценка качества проводимого анализа

Результаты экспериментов

Всего приложений проанализировано	1000
Вредоносное программное обеспечение	403
Безопасные приложения	597
Истинно-положительное значение (true- positive, TP)	333
Ложно-положительное значение false- positive, FP)	144
Истинно-отрицательное значение (true- negative, TN)	453
Ложно-отрицательное значение (false- negative, FN)	70

Sensitivity =
$$\frac{TP}{TP+FN}$$
 = 0.83 Specificity = $\frac{TN}{TN+FP}$ = 0.76

Выводы на основе результатов исследования

- Google Play в основном регламентирует юридические аспекты информационной безопасности
 - 2) Google Bouncer не является сложной интеллектуальной системой, которая способна выявить ВПО
 - Антивирусы не могут защитить от нового или сильно измененного старого ВПО
 - Статический и динамический анализ приложений для ОС Google Android дает достаточное количество сведений для анализа безопасности приложения
- 5 Кластеризация способна обеспечить достаточно высокую вероятность определения безопасности приложения для ОС Google Android

Санкт-Петербург, ул. Гжатская, 21 литер Г

Тел./факс: (812) 535-28-06

Сайт: neo-bit.ru

Почта: info@neo-bit.ru